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PrefacePreface

T his book is the third collection of articles originally published in the
IEEE Computer Graphics and Applications journal. All of these articles, of

course, have something to do with computer graphics. The first four were
originally written at Caltech and describe how I drew planets for the JPL
flyby movies. The rest of them were written after I came to Microsoft Re-
search and cover a pretty wide range of topics, from assembly language
optimization for parallel processors (Chapter 7) through exotic usage of
C++ template instantiation (Chapter 18) to theoretical mathematics
(Chapter 20). There should be something in here for everyone.

The previous two collections reproduced the original columns with
only a few updates and fixes. For this volume, however, I succumbed to the
urge to do major surgery on many of the columns. I changed some of the
mathematical notation to something I liked better. I added a lot more dia-
grams (as befits a graphics book). I added answers to questions that I
hadn’t found when the original columns were written. So even if you’ve
read the original magazine articles, go ahead and read this book. It’s a lot
better. (I’m especially proud of the improvements to Chapters 5, 18, 20,
and 21, if anybody wants to compare them with the originals.)

One of the things people say they like about these articles is their ir-
reverent style. This makes them a lot more fun to read than to write. I usu-
ally suffer greatly in writing them, going through six or seven major drafts.
Only after I get the exposition and mathematics right (usually involving
chasing down rogue minus signs) do I make the “joke pass.” For the joke
pass over this book I had the following idea. Have you noticed that when a
movie is re-released on DVD they usually enhance it with a collection of
deleted scenes and hilarious outtakes? How about setting it up so that I
could advertise this book as containing “deleted scenes” and “hilarious
outtakes”? This joke would only work, however, if these actually contained
meaningful content instead of just fluff. I have, therefore, included some
deleted scenes, stuff that was somewhat interesting but not on the main
topic or some half-formed ideas that I never pursued further. But what
should I do about outtakes? My model would be the wonderful fake
outtakes at the end of the recent Pixar movies. I have to admit, though,



that I came up a bit dry. How about “And then we see that the determinant
of the matrix is plus one, er no, minus one, er (dissolve into helpless laugh-
ter).” Or how about “As we see in Figure 2.5 . . . hey who drew the mous-
tache on Figure 2.5?” Maybe this concept doesn’t translate well to this
medium. You can, though, be charitable and give me a chuckle as though I
actually did it.

When looking over these columns and searching for some common
theme to use as a book subtitle, I realized that one of the things that I did a
lot in these columns was to experiment with mathematical notation. I have
some general comments to make on this, but if you’re like me you don’t
read the prefaces to books. So I put these comments into a new first chap-
ter. Since one of the notational conventions I use is to start vector compo-
nent indexing from 0, I have named this Chapter 0.
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my lateness. If it were not for them, these columns would never have got-
ten to press.

Finally, I would like to thank Microsoft Research for giving me an en-
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Chapter Zero: Notation

C H A P T E R Z E R O

Notation
A P R I L 2 0 0 2

A common thread running through the original articles that became this
book is experimentation with mathematical notation. You might think

mathematical notation would be the most consistent and systematic form
of representation possible. You’d be wrong! Mathematics is a natural lan-
guage, made up by humans, and contains just as many inconsistencies and
arbitrary rules as any other natural language. In this chapter, I want to be-
gin by making a few observations on this language, and to explain some of
the conventions I use in this book.

Mathematical Symbols
Mathematical Symbols

W hen someone says “Consider the x, y, z values,” you immediately think
they are talking about 3D coordinates. When someone says “the

quantity ” you usually guess that they are talking about an angle. When
someone writes it is likely that they are interpolating two
points. Whenever you write a mathematical expression, there is often a lot
of subtle and unstated meaning packed into the symbols you use. Let’s take
a brief look at some of the choices we have in building up a mathematical
symbol and the meanings these choices imply.

The Base Symbol
The first choice we make is which letter to use for the base symbol. The
alphabetic position of the letter is our first opportunity to pack extra infor-
mation into the symbol. Coordinates of points usually come from the end

,θ
( )0 11 ,α + −αP P



of the alphabet We use the beginning of the alphabet for polyno-
mial coefficients or for the coordinates of lines and planes

. Subscript indices come from the middle of the alpha-
bet Texture coordinates are often from the end of the middle

Foreign language fonts give us a whole raft of new choices, each with
their own conventional usage pattern. We use Greek letters for angles

for blending ratios and for some physical constants like display
intensity functions (see Chapter 9). And, of course, there are con-
stants like We use epsilon to represent a small quantity and delta
to represent a change in a quantity. We also use epsilon and delta to repre-
sent certain constant matrices (see Chapter 20). Other language fonts such
as Fractur, Hebrew, Cyrillic, and various script fonts and double line fonts
are typically used to represent various types of sets.

Once you’ve chosen a letter, you still have some choices as to how it is
drawn. It’s typical to use italics for scalar quantities and boldface
for vector and matrix quantities And, as this last example shows, to
use lowercase for vectors and uppercase for matrices. You can also use case
to pack yet another bit of meaning into a symbol, something I call the
“variation-on-a-theme principle.” Suppose you have two quantities that
are related in some way. To emphasize this similarity, it’s useful to have
their symbols be (nearly) the same but to have some other property (like
case) that distinguishes them. For example, I use case to distinguish be-
tween homogeneous vs. nonhomogeneous coordinates of
the same point, or 2D vs. 3D versions of a polynomial (see Chapter 20) or
covariant vs. contravariant components of a tensor (see Chapter 20 again).

Accessories
Once we’ve gotten our base letter, it’s time to trick it out with chrome
sidewalls and fuzzy dice to add even more information. And often these at-
tachments can have more than one meaning.

Subscript A subscript is most often used to index elements of a vector
or a matrix (In the notation of Chapter 20, these

would be contravariant indices.) Sometimes, though, a subscript repre-
sents a partial derivative And sometimes a subscript is just a
name extender to distinguish between different variations on a particular
base variable, such as or between elements of some unordered
collection such as I have also used subscripts to indicate which
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V γΑ Β
.π ( )ε ( )δ

, , ,a b x yΑ Β
.pTΑ Β

, ,x y wΑ Β ,X YΑ Β

0 1 2, ,p p p=p Α Β 1,2.M

.xF F x=∂ ∂

, ,min maxx xΑ Β

, , .x y zΑ Β
2ax bx c+ +Α Β

ax by cz dw+ + +Α Β
, .i jklP QΑ Β

, ,u vΑ Β , .s tΑ Β

, ,θ φΑ Β ( )α

, , .a b cp p p



coordinate system a point is in or which systems a matrix transforms be-
tween:

Superscript A superscript usually means exponentiation
Sometimes, however, we use a superscript as a placeholder for another
type of index, a covariant index This distinguishes them
from contravariant indices, which are written as subscripts. Often you can
tell the meaning of a superscript by context: exponentiated variables are
usually added to other exponentiated variables, while variables with
contravariant indices are usually multiplied by variables with covariant in-
dices Hopefully, authors will warn you if the usage is at all am-
biguous.

Other types of adornments look a bit like superscripts but really aren’t.
They can indicate some sort of function operating on the base symbol:
is the transpose of the matrix M; Q* is the adjoint of the matrix Q. (Older
notations use for adjoint and z* for complex conjugate.) Various num-
bers of primes often mean various orders of derivatives of
the base symbol. But . . . sometimes a prime is just a prime; it’s just another
type of name extender to indicate another variation of the base symbol.
For example, a transformed version of p could be written

Overhead Other adornments can appear over the symbol. Again, these
can indicate some function of the base symbol ( means the complex con-
jugate of z, means a normalized version of the vector v, and various
numbers of dots— —can again mean various numbers of derivatives
of x). They can be a sort of type declaration (an arrow, means that v is
a vector), or they can again be simple name extenders. I often use
as variations on the theme of x.

Underfoot Similar sorts of attire can appear underneath the symbol. I
don’t happen to use this much myself.

A Standard Notation
Wouldn’t it be nice if we could establish completely consistent rules for
the meanings of all these choices? Wouldn’t it be nice. The problem is that
it’s almost impossible to have a completely consistent notation that applies
to all of mathematics. There just aren’t enough squiggles to represent

Mathematical Symbols 3

3 2 .ax bx+Α Β
0 1 2 .p p p  
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everything uniquely. And it’s actually not even desirable. In different con-
texts, different properties are important and need to be emphasized. You
want to use the adornment that is the most visually obvious to indicate the
property that is most important intellectually. About all you can do is to
tell readers explicitly what the add-ons mean.

Computer Languages
Computer Languages

T he introduction of computer programming languages adds an interest-
ing set of constraints and freedoms to mathematical notation. Most im-

portantly, it is still inconvenient for variable names to have all the
attachments we have just described. We make up for it by using multiple-
letter variable names.

Variable Names
Just as in biology, the most popular operation in mathematics is multipli-
cation. It’s so popular that it has many notational variants. You can say

or you can simply write the two symbols to be multiplied
next to each other, ab. This minimalist notation raises the specter of ambi-
guity unless we insist that all mathematical symbols consist of only one let-
ter (but possibly decorated extremely nicely). Computer programming
languages, though, have more positional precision with their characters so
they afford the possibility of multiple character variable names without
problems. This does, however, raise a translation issue between the typical
mathematical way of writing something and a programming language–
friendly version. You will see in this book various examples of this where
the translation should be fairly apparent. Mathematical notations that are
just used as name extenders translate easily:

Subscripts used as indices translate into

and annotations that imply functions are written
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,a b× ,a b⋅ , ,a bΑ Β
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*
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−
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=
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Indexing
Another bit of culture clash between conventional mathematics notation
and computer programming is the starting index for vector/matrix ele-
ments. Mathematicians start counting with 1:

Computer scientists start counting with 0:

Vector3 v; v[0]=1; v[1]=42.; v[2]=sqrt(5);

It is sometimes possible to diddle the compiler into starting the indexing at
1, but this is language dependant and often makes for obscure code. I did a
quick survey of my colleagues around the lab and the consensus was that it
would be less confusing to alter the math notation. So for the purposes of
this book, all indexing, including that in mathematical equations, starts
from index 0:

I didn’t do this in the original articles, but I believe that I’ve caught all such
instances in revising the chapters for this book. If you see something that
looks wrong, consider that it might be one that I’ve missed. And to start
out on the right foot, we begin this book with Chapter 0.

Computer Languages 5
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Chapter One: How to Draw a Sphere Part I, Basic Math

C H A P T E R O N E

How to Draw a Sphere
Part I, Basic Math

J A N U A R Y 1 9 9 5

O nce upon a time (before the invention of ray tracing), I could claim
the honor of having drawn more spheres than anybody in the world.

This was because of all the moons and planets I drew for the Voyager flyby
movies at JPL. I could have drawn spheres by hacking them up into scads
of polygons, but that would have been the coward’s way out. Instead, I
wrote a special-purpose program that was highly optimized for drawing
spheres. There are quite a variety of interesting tricks involved in this pro-
gram, but when I started out to write about them I realized that a whole
bunch of matrix mathematics is necessary to understand the algorithm.
This chapter, then, consists largely of the matrix mathematics necessary to
manipulate (and ultimately render) second-order surfaces. I’ll get down to
the rendering next time.

Mathematical Context
Mathematical Context

I always have some trouble in writing these columns in deciding how
much math to assume that you already know. Rather than repeat a

bunch of stuff I’ve described before, I’ll just refer you to Table 1.1 for the
typographic conventions I will use here, and Table 1.2 for a quick review
of homogeneous coordinates. In addition, some of my past articles are



particularly relevant here.1,2 (Don’t you just love it when authors reference
only their own papers? It makes them seem so smug.3)

The description and manipulation of second-order curves and surfaces
is a very nice example of the use of homogeneous coordinates and

8 Chapter One: How to Draw a Sphere Part I, Basic Math

Table 1.1 Typographic conventions

Quantity Typeface Example

Scalar Italic x,y,z,s

Vector Bold lc roman p,e

Matrix Bold uc roman T,Q

Table 1.2 Homogeneous representations

Two dimensions Three dimensions

Geometry Algebra Geometry Algebra

Homogeneous point Homogeneous point

Nonhomogeneous
point

Nonhomogeneous
point

Point at infinity Point at infinity

Point transformation pT = p′ Point transformation pT = p′

Homogeneous line Homogeneous plane

Line at infinity Plane at infinity

Line transformation T*l = l′ Plane transformation T*l = l′

x y z =  p x y z w =  p

X Y

x w y w

 = 

  

X Y Z

x w y w z w

 = 

  

0x y   0x y z  

a
b
c

 
 
= 

  

l

a
b
c
d

 
 
 = 
 
 

l

0
0
c

 
 
 
  

0
0
0
d

 
 
 
 
 
 

1 Blinn, Jim, Jim Blinn’s Corner: Dirty Pixels, Chapter 9, “Uppers and Downers, Part I,” Morgan Kaufmann,
1998.

2 Blinn, Jim, Jim Blinn’s Corner: A Trip Down the Graphics Pipeline, Chapter 18, “The Homogeneous Per-
spective Transform,” Morgan Kaufmann, 1996.

3 Blinn, J. F., personal communication.



projective geometry. Since we will be dealing with spheres in perspective,
the capability of homogeneous coordinate geometry to deal with points
and planes at infinity will be especially useful.

The Goal
The Goal

I wanted an algorithm that drew a texture-mapped sphere arbitrarily
scaled and translated and placed into perspective. It must work for any

view of the sphere (this will turn out to be trickier than it seems). Oh, and I
want it to be fast.

I’ll first give a peek at the final operation of the algorithm to see what
sorts of geometric problems we will need to solve. This will motivate the
math in the remainder of this chapter.

I’ll use a basic scan line algorithm consisting of two nested loops, one
for y and one for x. We must be able to calculate the range of scan lines
covered by the sphere to determine the range for the outer ( y) loop. Like-
wise, for each scan line, we must calculate the x extent of pixels covered to
find the range for the inner (x) loop.

The focus of attention in making a rendering algorithm fast is the in-
ner loop. Inside this loop we will need, at each pixel, a normal vector to use
for illumination calculations and texture coordinates to use for texture
mapping. Going across a scan line we will find, first, that the z coordinate
as a function of the horizontal position, x, has the form

and, second, that the normal vector and the position on the unit sphere
(for texturing) are linear vector functions of x and z:

With the appropriate initialization, we can calculate many of these
quantities incrementally. My final inner loop will look like the following
(using the Vector/matrix classes defined in the Appendix):

That’s a square root, two scalar additions, two vector-scalar multiplica-
tions, and four vector additions.

The Goal 9

2
2 1 0z z x z x z= + +

0

0

x z

x z

x z
x z

= + +

= + +

n n n n
p p p p

float zs = sqrt(zSqrd); zSqrd += dzSqrd; dzSqrd += ddzSqrd;

Vector3 P = zs*Pz + PxXplusP0; PxXplusP0 += Px;

Vector3 N = zs*Nz + NxXplusN0; NxXplusN0 += Nx;



Now my task is to show you why this works and how to actually calcu-
late the x and y ranges and the zi, ni, and pi values. To do this, we must wal-
low a bit in matrix algebra.

Second-Order Curves
Second-Order Curves

I ’m going to go through this rigamarole first in just two (homogeneous)
dimensions to keep the diagrams and equations simpler. Most everything

will easily generalize to what we really want—3D surfaces.
For a second-order curve, the equation has only second powers of the

coordinates. The most general such equation is

We can rewrite this in matrix form as

I’ll call the 3×3 symmetric matrix Q, so another way to write the equa-
tion is

This formulation satisfies the homogeneous condition that any non-
zero scalar multiple of Q represents the same curve. For the most part,
these curves will be conic sections. Examples of the possible curves and
their defining matrices appear in Table 1.3.

Notice that some matrices will give degenerate conic sections; that is,
the curves are really two intersecting first-order curves (i.e., lines). This
will occur if you can factor the original second-order equation into two
first-order equations with real coefficients. The matrix Q is singular in
these cases. Another form of degeneracy happens when a matrix is satisfied
for one point only. You can think of these as circles with a radius of zero.
This will occur if the equation cannot be factored (without resorting to
complex numbers). The matrix will be singular in this case also.

The preceding two cases of degeneracy happen when the rank of the
matrix is 2. A further degeneracy occurs when the rank is reduced to 1. In
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2

2

2

0 2 2

2

Ax Bxy Cxw

Dy Eyw

Fw

= + +

+ +

+

0
A B C x

x y w B D E y
C E F w

  
    =   
    
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Second-Order Curves 11

Table 1.3 Types of second-order curves

Classification Shape Standard equation
Homogeneous

equation Matrix Q

Nondegenerate Unit circle X 2 + Y 2 = 1 x2 + y2 − w2 = 0

Parabola Y = X 2 x2 − yw = 0

Hyperbola Y = 1/X xy − w2 = 0

Degenerate:
two intersecting
lines

X and Y axes X = 0 or Y = 0 xy = 0

Diagonal lines Y = X or Y = −X x2 − y2 = 0

Degenerate:
single point

Origin X = 0 and Y = 0 x2 + y2 = 0

Doubly
degenerate: two
coincident lines

X axis twice X = 0 twice x2 = 0

Nondegenerate
but boring

Null curve X 2 + Y 2 = −1 x2 + y2 + w2 = 0

1 0 0
0 1 0
0 0 1

 
 
 
 − 

1 0 0
0 0 1 2
0 1 2 0

 
 

− 
 − 

0 1 2 0
1 2 0 0
0 0 1

 
 
 
 − 

0 1 2 0
1 2 0 0
0 0 0

 
 
 
  
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this case, the equation can be factored and the two factors are equal. The
resulting curve is two coincident lines.

The final case can occur when no points satisfy the equation.

Transformation
Given a quadric curve matrix Q and a homogeneous transformation ma-
trix T, we want to be able to derive a new matrix Q′ that represents the
transformed curve. That is, given

we want to find Q′ such that, for points on the curve,

To solve this, first flip the equation for transforming points around:

Then substitute this expression for p into the original quadric curve
definition:

Then expand the parenthesized expression and regroup:

By comparing the expression in square brackets with our desired expres-
sion for Q′, we arrive at the answer:

In other words, to transform a quadric curve, multiply on the left by the
adjoint (i.e., generalized inverse) of the point transformation and on the
right by the transpose of the adjoint. Quantities that transform in this
manner are called tensors.

Categorization by Eigenvalues
This transformation technique lets us simplify the categorization of quad-
ric curves a bit. We apply a theorem from matrix algebra that says that, if a
matrix is symmetric, it is possible to transform it into a diagonal matrix.
The values on the diagonals are called eigenvalues. Furthermore, by using
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the appropriate scale factors, we can scale any nonzero diagonal elements
to be +1 or −1. The only thing we can’t do (with a nonsingular transfor-
mation) is change the sign of an eigenvalue or the number of eigenvalues
that equal zero. Furthermore, since multiplying the whole matrix Q by−1
will produce the same curve, flipping the signs of all eigenvalues will yield
the same curve type. Thus, all the curve types are covered by the possible
patterns of +, -, and 0 for the three eigenvalues. See Table 1.4.

Note that this categorization does not distinguish between shapes that
are different only due to homogeneous transformations (perhaps including
perspective). Since any (nonsingular) transformation won’t change the
signs of the eigenvalues, any transformation of a curve of a particular type
is the same curve as far as homogeneous projective geometry is concerned.
Thus an ellipse, parabola, and hyperbola are all in the same category. You
can think of a parabola as an ellipse that is tangent to the line at infinity.
You can think of a hyperbola as an ellipse that pokes through the line at
infinity and wraps around back to normal local space.

Inside vs. Outside
The quadric form we have been using allows us to compute a number for
any point, even those not on the curve:

If p lies on the curve, the value of f will, of course, be zero. If p is not on
the curve, the sign of f can tell us if the point is inside or outside the curve.
Which sign means inside, and which means outside? Look at the value we
get by multiplying the arbitrary point by the matrix for the
unit circle at the origin:
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Table 1.4 Types of second-order curves via eigenvalue sign

Eigenvalue signs Curve type

Nondegenerate

(+,+,+) or (-,-,-) Null curve

(+,+,-) or (-,-,+) Conic section

Degenerate

(+,+,0) or (-,-,0) Single point (circle with radius = 0)

(+,-,0) or (-,+,0) Intersecting lines

Doubly degenerate

(+,0,0) or (-,0,0) Coincident lines

T f=pQp

x y w  



If f is positive, the point is outside the circle; if negative, it is inside.
We must be a bit careful, however. Remember that in homogeneous coor-
dinates has the same geometric meaning as ,
and −Q has the same geometric meaning as Q. Using the point

in the preceding equation still gives us the same sign, but
using the matrix

flips the sign. Since the inside/outside test must be kept unambiguous, we
shall only use the version with two+1s and one−1. Note that a geometric
transformation will not change the sign of Q even if a negative scale factor
is involved. This is because the transformation is being multiplied twice,
and the negatives cancel.

Line Tangency
An important feature of homogeneous geometry is the two-for-the-price-
of-one theorem, otherwise known as the duality principle. This states that if
you take some true statement about points, lines, and matrices, you get an-
other true statement by interchanging the words point and line, and replace
the matrices with their adjoints. For example, the statement

point p is on curve Q if pQpT = 0

becomes

line l is on curve Q if lTQ*l = 0

In other words, you can test if a line is on (tangent to) a curve by multiply-
ing it by the adjoint of the curve matrix.

We can generalize this discussion about inside/outside for points
by looking at the case of the unit circle at the origin and the horizontal line
Y = yH. We represent the line by the column vector
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The adjoint of the unit circle matrix is

So the line tangency equation becomes

The line is tangent to the circle if yH = ±1. If the line inter-
sects the circle at two points and the expression yH

2−1 is negative; if
the line does not intersect the circle anywhere and the expression

is positive. We then have the punch line:

If the product is the line the curve.

We can turn this around to solve another useful problem, namely,
finding the y extent of an arbitrary curve. We do this by making our hori-
zontal line tangent to the curve Q:

Multiplying this out gives a quadratic equation for yH. The two solutions
are the maximum and minimum y extent of the curve.

The line tangency equation also allows us to check the categorization
of conic sections into the familiar categories of ellipse, parabola, and hy-
perbola. The interpretation is that an ellipse is disjoint from the line at
infinity, a parabola is tangent to the line at infinity, and a hyperbola inter-
sects it in two locations. The line at infinity has the vector so
this product
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will simply equal the bottom-right element of Q*, which in terms of the
original definition of the elements of Q equals AD − B2. You can check
that this works by referring to the Q matrices of the first three entries in
Table 1.3.

Normal Vectors
You can form a vector normal to a general algebraic curve
by taking partial derivatives of the function:

Simply evaluate the derivatives at the point at which you need the normal
vector. This vector is not necessarily of unit length and must be appropri-
ately scaled if this is a requirement.

For practice, let’s look at a first-order surface

The normal vector is simply That is, the first two components
of a homogeneous line form a vector perpendicular to the line.

For a second-order surface, the components of the normal vector
come from the product rule for derivatives and the fact that Q is
symmetric:

In other words, we get the components of the normal vector to curve Q at
point p by multiplying p by the first two columns of Q.
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Polar Lines and Points
Poor old Q is now sitting there singing, “Why not take all of me?”
What happens if we go whole hog and multiply p times all of Q?
We get a three-element vector:

QpT = l

If we dot this vector with p, we get 0 since p lies on the curve:

In other words, we can interpret l as a line going through the point
p. And since the normal to this line is also normal to the curve, the
line is tangent to Q. The line so constructed is the tangent to the
curve at p. Nifty. This line is called, by the cognoscenti, the polar
line to curve Q at p. See Figure 1.1.

Now what happens if we try this with a point
that is outside of Q? The quantity QpT is still a
perfectly reasonable line; it just no longer goes
through point p. The polar line will intersect the
curve in two points. If we connect these points to
p, we find that the two lines formed are the two
tangents from p to the curve. See Figure 1.2.

If the point p is inside the curve Q, the polar
line will not intersect it. Instead, consider all lines
m through p. Each m will intersect Q at two
points. Find the two tangent lines at these points.
The intersection of these two tangent lines will
trace out the polar line l as m rotates about p. See
Figure 1.3.

The dual form of “a polar line of a point” is a “polar point
of a line.” We form this by the expression

lTQ* = p

If l is tangent to the curve, p is the point of that tangency (see
Figure 1.1 and pretend that l was the input and p was the de-
rived point). If l intersects the curve, p is the intersection
of the two lines tangent to the curve at those points (see Fig-
ure 1.2 again). If l is disjoint from the curve, p is inside it (see
Figure 1.3).
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The Tangent Quadric
How can we find the equations of the two tangent lines in Figure 1.2? Let’s
do this by remembering that a set of two intersecting lines is itself a (de-
generate) second-order curve. We want to construct, given p and Q, the
degenerate quadric matrix R for these two intersecting tangent lines. First
form the doubly degenerate quadric representation of the polar line l by
forming the outer product,

This symmetric matrix is an example of a “coincident lines” quadric, as
shown in Table 1.3.

We now have two quadrics, Q and , which pass through the two
points of tangency. Therefore, any linear combination of these two matri-
ces must also pass through these two points:

In particular, we wish to find that linear combination that passes through
point p and thus satisfies:

We want to find any two values of that cause this equality to hold.
Inserting the definition l =QpT into the above and factoring, we get

A reasonable choice for would be

So the net degenerate quadric forming the two tangent lines is

If the point p is outside the curve Q, the quadric R will be an “intersecting
lines” quadric consisting of the two tangents to the curve. If the point p is
on the curve Q, then is zero and R is just , the coincident-line
quadric that is the tangent line l coincident with itself. If point p is inside
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the curve, there are no tangent lines. The quadric R indicates this by being
a degenerate single-point curve—that point being p itself.

Second-Order Surfaces
Second-Order Surfaces

T he generalization of the machinery above from two dimensions to three
dimensions is mostly pretty simple. The general second-order equation

in 3D is

Rewriting this in matrix notation:

I’ll again call the 4×4 symmetric matrix Q. We can categorize the types of
possible surfaces by looking at the signs of the eigenvectors. See Table 1.5.

Again, the classifications do not distinguish between shapes that are
different only due to transformations (possibly including perspective).
There are three distinct, perspectively equivalent, types of nondegenerate
surfaces: null, ellipsoid and friends, and saddle point and friends. It is not
possible to transform, say, a hyperboloid of two sheets into a hyperboloid
of one sheet.

The ellipsoid, paraboloid, and hyperboloid of two sheets are the same
shape as far as projective geometry is concerned. Like their 2D counter-
parts, you can think of a paraboloid as an ellipsoid that is tangent to the
plane at infinity and a hyperboloid as an ellipsoid that intersects the plane
at infinity, pokes through, and wraps around the other side. You can, with a
perspective transformation, change any one of these to the other. These
are the surfaces we are going to draw. We must realize, then, that our
perspectivized sphere might become a hyperboloid on the screen.

As another intuition exercise, look at the equivalence of cylinders and
cones. Consider a cylinder around the x axis. All points on the cylinder
very far away in the x direction converge to the same single point at in-
finity [1, 0, 0, 0]. In other words, a cylinder is a cone with its apex at
infinity.
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Transformations
Given a 4×4 homogeneous transformation matrix T for transforming
points, we transform a quadric surface by

Q′ = T*QT*T

Plane Tangency and Intersection
Plane l is tangent to surface Q if

lTQ*l = 0

If this quantity is negative, the plane intersects Q; if positive, the plane is
disjoint from Q.

Normal Vectors
You get the vector normal to surface Q at point p by multiplying p by the
first three columns of Q:
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Table 1.5 Types of second-order surfaces via eigenvalue sign

Eigenvalue signs Curve type

Nondegenerate

(+,+,+,+) or (-,-,-,-) Null curve

(+,+,+,-) or (-,-,-,+) Ellipsoid
Paraboloid
Hyperboloid of two sheets

(+,+,-,-) Hyperboloid of one sheet
Hyperbolic paraboloid (saddle point)

Degenerate

(+,+,+,0) or (-,-,-,0) A single point (sphere with radius = 0)

(+,+,-,0) or (-,-,+,0) Cylinder
Cone

Doubly degenerate

(+,+,0,0) or (-,-,0,0) A single line (cylinder with radius = 0)

(+,-,0,0) Two intersecting planes

Triply degenerate

(+,0,0,0) or (-,0,0,0) Two coincident planes



Polar Planes and Silhouettes
The plane tangent to surface Q at point p is

QpT = l

If point p is outside of surface Q, you will get a plane that intersects
the surface instead of being tangent to it (see Figure 1.4). The geometric
interpretation of this polar plane is as follows: take all the lines through p
that are tangent to surface Q. These form
a cone. All the points of tangency will lie
on the polar plane.

An interesting use of the polar plane
construction is the silhouette plane. The
silhouette edge of an object is formed of
all points where the line of sight from the
eye is tangent to the surface. This silhou-
ette will lie in the polar plane of the eye
point with respect to Q.

The 2D construction of the two tan-
gents from a point to a curve generalizes
easily to three dimensions. The degener-
ate quadric surface

R =QpTpQ − pQpTQ

is simply the cone with apex at point p and tangent to surface Q. The per-
ceptive reader will note that this is identical to the 2D equation of the
two tangents to a conic from the previous section. In this case, the vectors
have four elements and the matrices are 4×4, while previously they were
3-vectors and 3×3 matrices. Again look at Figure 1.4 for a geometric view.

The cone of Figure 1.4 is useful in calculating shadows. If the point p
represents a light source, the surface Q will cast a shadow across all points
that are both within the cone and on the opposite side of the polar plane
QpT from p.
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Summary
Summary

S o . . . we now have a bunch of geometric problem-solving techniques us-
ing matrix algebra under our belt. In the next chapter, we’ll apply them

to the rendering problem.
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Chapter Two: How to Draw a Sphere Part II, Coordinate Systems

C H A P T E R T W O

How to Draw a
Sphere Part II,

Coordinate Systems
M A R C H 1 9 9 5

T his chapter continues my discussion about how to render a single arbi-
trarily transformed sphere. In Chapter 1, I tantalized you by describing

what the inner loop is going to look like. Then I listed a whole bunch of
vector/matrix algebra operations and the geometric constructions they
represent. Now I’ll start out to derive the inner loop of the rendering algo-
rithm, and you will see all the matrix algebra in action. Most of our time,
however, will be spent picking the correct coordinate system to make the
inner loop fast and accurate. Even if you never have occasion to write a
special-purpose sphere-rendering program, this will be an excellent illus-
tration of the workings of the homogeneous perspective transform and
geometric interpretations of the various other transformation matrices.
This chapter will firmly establish my inexhaustible enthusiasm for matri-
ces. You’ll see so many matrices here your eyes will fall out.

Coordinate Systems
Coordinate Systems

I n Chapter 14, “Pixel Coordinates,” of Jim Blinn’s Corner: A Trip Down the
Graphics Pipeline, I described several different coordinate systems that an

TepTde

TpeTed

pd pe pp



object implicitly passes through on its way to the screen, all related by sim-
ple 4×4 homogeneous matrix multiplications. Three of these coordinate
systems will be of particular interest here, so let’s review them.

Definition Space
This is the coordinate system in which our sphere is defined. The sphere is
centered at the origin and has a unit radius. This is the coordinate system
in which we will derive texture coordinates for texture mapping.

Eye Space
In this system, the eye is at the origin and is looking down the positive z
axis, a left-handed coordinate system. The sphere has been rotated, scaled,
and translated to wherever the model and camera position dictate. Dis-
tances and angles in this system have real-world geometric meaning, so
this is the coordinate space in which we will do lighting calculations. Even
though we start out with a perfect sphere in definition space, we might
perfectly well transform it into an ellipsoid in eye space, so our algorithm
will actually render an arbitrarily oriented ellipsoid.

Pixel Space
This is the coordinate system we’re in after a homogeneous perspective
projection has been performed, and after the x and y coordinates have been
scaled so that integer values of x and y refer to pixel coordinates.

Naming Conventions
Naming Conventions

W e’ll be dealing with algebraic constructions relating points, trans-
formed spheres, and planes in each of these three coordinate systems,

so let’s devise some conventions to keep from getting lost. All this is sum-
marized in Figure 2.1.

Points
I’ll use subscripts to distinguish between the
coordinate systems so that, for example, pd is
a point in the definition space, pe is the same
point in eye space, and pp is the same point in
pixel space. All points are four-element ho-
mogeneous row vectors.
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Planes
Likewise, ld is an arbitrary plane in definition space, le is the same plane
in eye space, and lp is the same plane in pixel space. All planes are four-
element homogeneous column vectors.

Transformations
I’ll write transformations between the systems with double subscripts so
that

pdTde = pe and peTep = pp

and, of course, you can multiply the matrices themselves so that

TdeTep = Tdp

The two matrices Tde and Tep are the inputs to our algorithm. Matrix
Tde contains rotations, scalings, and translations but probably doesn’t have
a perspective component. Matrix Tep contains a homogeneous perspective
and the appropriate x and y scalings to map the sphere to integer screen
pixels.

Adjoints
We will also use the inverses of these matrices, both to shove points “back-
ward” up the pipeline and to transform planes forward down the pipeline.
(Actually the adjoint, denoted by a superscript asterisk, is good enough
and is easier to calculate.) We’ll have to keep careful watch over these to
keep from getting confused. Here are a few typical such operations:

Given a plane l, we can transform it by postmultiplying by the adjoint of
the point transformation matrix. For example,

Notice the nice way the subscripts work out; compare the two equations

pdTde = pe

and

Ted ld = le
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Quadrics
Finally, the representation of our sphere as a 4×4 matrix in definition
space looks like

and in other coordinate systems it will look like

Remember that we transform a quadric surface by multiplying by the
adjoint and the adjoint transpose of the point transformation matrix.

Code and Indexing Conventions
Code and Indexing Conventions

I will ultimately translate all these calculations into C++ code using the
simple vector/matrix classes listed in the Appendix, which define all the

typical mathematical operations that vectors and matrices undergo. There
is, however, a clash between indexing conventions of typical mathematical
notation and C++, which as I described in Chapter 0, I will resolve by do-
ing all mathematical matrix/vector indexing starting at zero. I will also
predefine some constants so that retrieving specific components of a vec-
tor can be done symbolically.

const int a=0,b=1,c=2,d=3;
const int x=0,y=1,z=2,w=3;
Vector4 P; // can access elts by P[x],P[y],P[z],P[w]

Vector4 L; // can access elts by L[a],L[b],L[c],L[d]

The Basic Algorithm
The Basic Algorithm

T he basic idea of the whole algorithm is to calculate, in pixel space, the z
value for each x, y pixel value. In other words, for a given pixel coordi-

nate we substitute into the equation
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This will give a quadratic equation in zp, which we solve via the quadratic
formula. Then we transform the resulting 3D point back up the pipe to
the e and d coordinate systems in order to calculate normal vectors and
texture coordinates, respectively. Do this for each pixel and, voila, you
have a picture. Now let’s look at some of the things that can go wrong with
this quadratic equation.

Why Space Is Scary
Why Space Is Scary

Space is big. Really big. You just won’t believe how vastly hugely,
mind-boggling big it is.

—Hitchhiker’s Guide to the Galaxy

R ight-o. And the moons and planets are real small and real far apart. This
can get us into nasty precision problems in some situations when we try

to draw pictures of them. To see why, let’s review what goes on in a typical
transform.

The transformation from definition to eye space Tde contains no per-
spective, so it looks like

where the asterisks mark matrix elements we aren’t particularly interested
in for the time being, and zc is the z coordinate of the center of the sphere
(in eye space).

The transformation from eye to perspective space Tep does contain
perspective, defined by the field-of-view angle f and the locations of the
desired near and far clipping planes (in eye space) denoted by zn and zf . We
first precalculate the values

Then we have
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The net transformation from definition space to pixel space is then

Typically, users won’t want close-by objects to be clipped off, so they set
the value of zn to be something very small (near the eye). But if zn is very
small, the right-hand two columns of this matrix are almost the same (ex-
cept for a scale factor). This is bad, baaaad. It means that any point trans-
formed to pixel space is going to have its z coordinate equal to something
times Q and its w coordinate equal to the same something times s. After
the homogeneous division, the sphere is squashed almost flat against the

plane. And since

the smaller zn is, the closer this is to 1.
It’s important to realize that this problem is really independent of the

clipping process. Even if we’re not going to do any z clipping (which we,
in fact, won’t bother to do when rendering shaded images), the zd coordi-
nate is going to have to map somewhere in zp. The zn and zf values are just
convenient handles on what the z’s transform to.

The solution to the resolution problem, of course, is to make zn as big
as possible. Like maybe, zc − r, with r the radius of the sphere (in eye
space). Good and bad values of zn are shown in Figure 2.2.

Family Portraits
Now how about if we are looking at both a planet and a moon. For exam-
ple, the moon Callisto orbits Jupiter at a distance of about 26.394 Jupiter
radii and has a radius of about 0.034 Jupiter radii. Let’s view this scene
straight on from a distance of 50 Jupiter radii. The best we can do for the
near clipping planes is zn = 50 − 26.394 − 0.034 = 23.572. While draw-
ing Jupiter, the matrix is
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The front and back of Jupiter transform to and
. After the homogeneous division, the zp coordi-

nates will be and ; the entire sphere is squashed be-
tween these values. This is not too good for precision.

For this reason I don’t even try to render multiple spheres in the same
z depth coordinate system. My sphere renderer only takes care of one
sphere. I generate multiple spheres by the painter’s algorithm, draw the
whole farthest-away sphere
first (with its own private zn

and zf ), and then overlay the
nearest sphere on top of it
(with its own zn and zf ).

Telescopic Views
Putting the near and far
clipping planes snugly
around our model is our
best strategy, but it is not al-
ways easy. Suppose you
wanted to generate a view of
Callisto as seen from the
Earth (simulating a tele-
scopic view). The distance
from Earth to Callisto is
about 257231.27 times the
radius of Callisto. Here we
run into another problem,
zc = 257231.27, and the op-
timal zn = 257230.27. To construct the matrix, we must subtract these two
almost equal numbers and we lose precision.

Optimizing the Depth Transformation
Optimizing the Depth Transformation

I t turns out that we can arrange for a post-facto repair of any roundoff er-
rors in the matrix. We simply take the location of the zn and zf “clipping”
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planes out of the hands of the user and calculate an optimal matrix our-
selves. To figure out how to do this, we have to get cozy with the matrix
and find out what it really means geometrically.

Let’s take a look at Tdp. This transforms points from definition space
to pixel space, but it also transforms planes from pixel space to definition
space. One particularly interesting plane is the eye plane, which I’ll call v.
In eye space, this is the ze = 0 plane, or . In perspec-
tivized pixel space, this becomes the plane at infinity, .
And in definition space, we get

This means that we can interpret the rightmost column of Tdp as the eye
plane in definition space. I’ll give this column the name tdpW. (Note that I
use a lowercase t here to emphasize that this is a vector. The subscript now
contains two pieces of information: the dp designation for the matrix this
column is a part of and the W to indicate which column. I’ve used an up-
percase W here just to make it more visually separable from the dp.)

Next, consider the desired near clipping plane n. In pixel space, this is
the plane zp = 0, whose vector representation is .
Taking this back to definition space, we get

This means that column 2 (starting from zero) of Tdp is the near clipping
plane in definition space. I’ll call this column tdpZ.

Next, we realize that any x, y coordinates on the sphere only depend
on columns 0, 1, and 3 of Tdp. If we change column 2, we don’t change the
placement of points in x, y on the screen. We can then change this column,
after the fact, to put the near plane wherever we want. What we would like
is for nd to be parallel to vd and tangent to the sphere. The orientation of a
plane is specified by the first three elements of its vector, and the distance
from the origin is proportional to the fourth. So, if we name the elements
of the fourth column of as follows:
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we can construct

and pick r to make tangent to . The equation for tangency is

and solving for r gets us

Which sign do we pick for the root? We want planes and to be
on the same side of the origin. Otherwise, our near plane will be tangent to
Qd on its far side. Dotting these vectors with the origin, ,
gives just their fourth components, d and r. So we want d and r to have the
same sign. The value of d = zcs is positive if the sphere is in front of us, so
we must pick the positive root for r.

Now, we could just stuff in for the third column of Tdp,
but there is a homogeneous subtlety here that we must be careful of. Re-
member that any scalar multiple of a column vector represents the same
plane. So tdpZ can be any scalar multiple of our result:

The scale factor of the column is important. What does it mean? Well,
it won’t change where Tdp puts the planes vd or nd, but it will change where
it puts other planes parallel to these two. We can use it to adjust things
so that the far clipping plane f is tangent to the back side of the sphere.
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The far plane in pixel space is so the column vector for fp is
. In definition space, it is

We want this to be tangent to Qd so

Plugging in and multiplying out leads to

Solve for k

Both d and r are positive numbers, so the addition creates no precision
problems. And what if r = 0? This means that vd is the plane at infinity,
which means that the perspective transformation was not formed cor-
rectly. I disallow this.

What have we done here? We have constructed a whole new column 2
for Tdp without even looking at the old column 2, or how much the
roundoff error might have messed it up. And this works even if, for some
bizarre modeling purposes, we had happened to have a perspective com-
ponent in Tde.

The Algorithm
The code for optimizing transformation Tdp is a lot simpler than the math-
ematical derivation. Translating it into C++ gives
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// Replace column z of Tdp with a better one

Vector4 Vd = Tdp.Col(w); // eye plane in definition space

float r = sqrt(Vd[a]*Vd[a] + Vd[b]*Vd[b] + Vd[c]*Vd[c]);

Vector4 Nd = Vector4(Vd[a],Vd[b],Vd[c],r); //near plane, defn space

float k = (r+Vd[d])/(2*r);
Tdp.setCol(z, k*Nd);



Milking the Perspective Transformation
Milking the Perspective Transformation

A s long as we’re messing with the z coordinate, let’s go a bit further and
do something really useful. Because we are going to solve a lot of qua-

dratic equations to get zp values at each pixel, we’ll do another transform to
make these equations a lot simpler.

Take a look at a side view of the situation in eye and pixel space in Fig-
ure 2.3. As I described in Chapter 1, the visible outline of the sphere, the
silhouette edge, lies in the polar plane from the eye point, e, to the sphere.
We can calculate this plane, s, simply:

QeT = s

If the center of the sphere is exactly on the zp axis, this plane will be parallel
to the screen. But in general the center can be off the axis, the silhouette
plane will be at some angle, and the silhouette outline will be an ellipse. In
pixel space, the eye is at infinity, , and the sight lines to
the silhouette are all parallel. If we were to do a shearing operation in the z
direction, it would not change the visible outline of the sphere at all. Let
us, then, postmultiply our pixel space by a transformation that shears the
sphere so that its silhouette plane coincides with the z= 0 plane. This will
create yet another coordinate space, to which I’ll give the subscript s.

We want to generate the matrix Qs for the sphere in our new sheared
space to be something special. Marking nonzero values with asterisks, we
want
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Why would this be nice? Because when we plug in a given pixel coordinate
, we get

(I’ve written the specific matrix element Qs22 with italic type since it’s a sca-
lar.) We can rewrite this as

We can now solve for zs with just a square root, about as simple a quadratic
equation as you could hope for. For future reference, I’ll give the name

to the matrix

So, what do we use for Tsp to make this happen? An arbitrary shearing
transformation has the form

(I’m recycling the variables a, b, c, d here.) Why is this a shearing transfor-
mation? Multiply in any point and you see that you don’t change the x, y,
or w components. And as long as the value of c is not zero, the matrix is
nonsingular.

Now what do we use for a, b, c, and d? Well, symbolically grunting
through the matrix product will tell us. I’m game if you are
(grunt, grunt). The result is
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We want these all to be zero so

What if Qp22 = 0? It means that the eye point [0, 0, 1, 0] lies on the surface
of the sphere. Ouch. Disallow this.

We don’t get an explicit condition for c; it simply represents a z scale
factor applied to the sheared sphere. We don’t really care what it is, so by
analogy to the equations for a, b, d, I simply picked

But wait a minute. Since c is negative, it means that our transformation Tsp

contains a mirror reflection about the zs = 0 plane. Isn’t that bad?
Well, it happens that I kind of like this. A nonreflecting shear transfor-

mation would transform the front (visible) side of the sphere to the nega-
tive z side of s space. Now, since we are also reflecting about z, the visible
side is on the positive z side. In other words, when we go to take the square
root of zs

2 as calculated above, we want the positive square root.

The Algorithm
The simplest implementation of this is

Implementing it this way is simple, but I did it a bit differently. I took
advantage of all the zeros in Qd and Tsp to write explicit expressions
for the elements of Qp and Tsd. Also, the two matrix multiplications
in the calculation of Qtilde can be removed by doing the product
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Matrix44 Tpd = Tdp.Adjoint();

Matrix44 Qp = (Tpd * Qd).TimesTranspose(Tpd);//Q, pixel space

Matrix44 Tsp = Matrix44::Identity;

Tsp.setCol(z ,-Qp.Col(z)/Qp(z,z));

Matrix44 Tsd = Tsp * Tpd;

Matrix44 Qtemp = -(1/Qp(z,z)) *

(Tsp * Qp).TimesTranspose(Tsp);

Matrix33 Qtilde(Qtemp(0,0), Qtemp(0,1), Qtemp(0,3),

Qtemp(1,0), Qtemp(1,1), Qtemp(1,3),

Qtemp(3,0), Qtemp(3,1), Qtemp(3,3));



symbolically (more grunt, grunt). Some stuff cancels out, and you will find
simply that

You can get the remaining starred elements from the fact that is
symmetrical.

Another Use for Shearing
Another Use for Shearing

W hile the main topic of Chapters 1 through 3 is shaded image rendering
of spheres, I’ll digress briefly here to discuss another tricky use of the z

shearing technique that is useful for line drawings. A normal line drawing
of a sphere is confusing since both the front and back halves of the sphere
are visible. We would like to turn off any lines on the back side of the sil-
houette plane. If we do a slight variant of the previous z shearing, we can
put the silhouette plane at the far clipping plane, zs= 1. The standard line-
clipping process will slickly slice off the back half of the sphere. But we
need to make sure the rest of the sphere remains inside the clipping region
(i.e., in front of the zs = 0 plane). A good way to ensure this is to make the
front of the sheared sphere tangent to the zs = 0 plane.

We start with the (nonoptimized) Tdp and we want to calculate a new
Tds. Again these differ only in their third columns. This time, instead of
specifically finding the shear between them, we’ll go straight for the de-
sired new third column and stuff it in to Tdp to make Tds directly. Our two
requirements are that the silhouette plane coincides with the far clip plane
and that the near clip plane is tangent to the front of the sphere.

For the first requirement, look at the far plane in definition space:

We make this equal to the silhouette plane in definition space, which is the
polar of the eye point e:

Qded
T = sd

Where do we get ed
T from? We know where the eye is at in pixel space

. . . infinity. So, in definition space it’s at

36 Chapter Two: How to Draw a Sphere Part II, Coordinate Systems

Q�

0
0
1
1

d ds s ds dsZ dsW

 
 
 = = = − 
 
− 

f T f T t t

00 02 01 02 03 02

11 12 13 12
22

33 32

1
*
* *

p p p p p p

p p p p
p

p p

Q aQ Q bQ Q dQ
Q bQ Q dQ

Q
Q dQ

 − − −
 

=− − − 
 − 

Q�



But we don’t really have to do a whole adjoint calculation. We can also ex-
press this as

We can consider each column of Tdp as a plane in space. We want the dot
product of the eye point with columns (planes) 0, 1, and 3 to be zero. In
other words, we want to find the 3D intersection of these three planes.
There is a specific formula for intersecting three planes that is a 4D analog
of the 3D cross product; I call it the 4D cross product, and it’s defined as
follows:

where

So we just apply this to columns 0, 1, and 3 of Tdp (named below as tdpX, tdpY,
tdpW) and get

Once we have the eye point in definition space, we can solve for tdsZ.
But first we must remember that any scalar multiple of the silhouette plane
is the same plane, so we must include a scale factor α:

αsd = αQded
T = tdsZ − tdsW

Solving for tdsZ gets us

tdsZ = αQded
T + tdsW
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We can use the factor α to give us the freedom to satisfy the first require-
ment, that the near plane be tangent to the sphere. The near plane in
definition space is tdsZ itself since

We want this to be tangent to Qd. Tangency occurs if

Boiling this down a bit, and using the fact that QdQd* = −I we get

(2.1)

Now, what is the geometric meaning for tdsW? The ds and dp transforma-
tions differ only in column 2 (z), so tdsW is the same as our old friend tdpW;
it’s the eye plane in definition space tdpW = vd. The dot product with

is zero, so the middle term in Equation (2.1) goes away
and we can solve for

Whew. Almost done.
Which sign, pray tell, of α do we use? Pick the wrong sign and you get

the back side of the sphere instead of the front side. You know how I really
did this: I tried both. It turns out that you need the negative root. Now
let’s be good boys and girls and go back and justify this. We can calculate
the point of tangency of the near clip plane, nd, with the sphere in d space
by the product

We want this point to be on the same side of the silhouette plane as the eye
point. So we want the dot product to have the same sign as the dot
product The first of these boils down to
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and the second is

How to make these have the same sign? Make α negative. And there
you are.

Making This an Algorithm
Implementing this in code, we first define a function to calculate vQdv

T

The results appear in Figure 2.4. Note that this works for an arbitrary
ellipsoid at an arbitrary location in perspective.

The Result
The Result

A nyway, back to shaded sphere rendering. We
now have two vital pieces of information. We

have the matrix to convert pixel coordinates
into zs

2, and we have the sheared opti-
mized matrix Tsd to transform back
to definition space. Though the matrix opera-
tions seem a bit intimidating at first, they are
much easier to implement than to derive. And
they only have to be performed once per picture.
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//Multiply vector on both sides of sphere matrix

float VQV(Vector4& V) {

return V[x]*V[x]+V[y]*V[y]+V[z]*V[z]-V[w]*V[w];}

The calculation of the new matrix is then

// Calculate Tds from Tdp

Vector4 Ed = Cross(Tdp.Col(x),Tdp.Col(y),Tdp.Col(w));

float    d1 = VQV(Ed);

float    d2 = -VQV(Tdp.Col(w));

float alpha = -sqrt(d1/d2);

Vector4 Sd(Ed[x],Ed[y],Ed[z],-Ed[w]); //Sd = Qd * Ed^t

Matrix44 Tds = Tdp;

Tds.setCol(z,  alpha * Sd + T.Col(w));

(a) (b)

Figure 2.4 Clipping the back half of the sphere with
the far clip plane: no shearing (a) and silhouette
plane sheared to far clip plane (b)
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In the next chapter, I’ll talk about how to actually construct the ren-
dering loops. The final program, with a few antialiasing tricks, worked just
fine for drawing the moons and planet for the two Voyager Jupiter encoun-
ter films. And the special-purpose sphere drawing code replaces a whole
raft of polygon transforming, sorting, and tiling. That was especially nice
since it had to run on a machine with 64 Kbytes of memory.

Then came Saturn.
Tune in next time to see why Saturn broke the program. (Hint: It has

something to do with the rings.)
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Deleted Scene
As an example, let’s generate the degenerate quadratic matrix for an ar-
bitrary desired single point. We begin with the matrix that represents
the quadratic that is only satisfied by the single point at the origin

:

Now translate this to the required coordinates. The result will be
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Deleted Scene
Note that the condition of inside/outside makes sense in the second-or-
der curve case although it does not for first-order curves (lines). This is
because a conic section divides the plane into two disjoint regions, while
a line doesn’t (recall that points on each side of the line still connect
through the plane at infinity). This condition can be defined in a man-
ner consistent with the homogeneous philosophy; a point is inside a
curve if all lines through it intersect the curve; it is outside if there are
some lines through it that don’t intersect the curve.
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Our Story So Far
Our Story So Far

W e want to draw a sphere. Actually, we want to draw an arbitrarily scaled
and oriented ellipsoid. In Chapter 1, I showed some matrix algebra for

describing, transforming, and intersecting points, planes, and quadric sur-
faces (of which a sphere is a special case). In Chapter 2, I defined some use-
ful coordinate systems and transformations. I’ll use the same notation
conventions defined there. Let’s list what we have done so far.

Inputs
We are given the following:

■ Qd —A matrix describing a unit radius sphere in its definition coordi-
nate system:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

d
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■ Tde—The viewing transform: a transformation matrix to go from
definition space to eye space (eye at origin, looking down +ze). This
can contain arbitrary scales and rotations, and thus could transform
our sphere into an arbitrarily oriented ellipsoid.

■ Tep—The perspective transform: a transformation matrix to go from
eye space to pixel space (including perspective and x, y scales necessary
to place pixels at integer coordinates).

Preprocessing
We first multiplied the transformations to get Tdp. We then diddled the
third column of Tdp to scale and translate the depth (z) coordinate to fully
utilize the precision of the range between zd = 0 and zd = 1, without
changing the x, y appearance of the shape.

Emboldened by this, we realized that we could further mangle Tdp by
shearing, as well as translating and scaling, in z. This defines a variant of
pixel space (denoted by the subscript s) that doesn’t change the x, y shape
of the sphere (or rather the ellipsoid) but makes it straddle the zs= 0 plane
with the silhouette outline embedded in the plane. We calculated the ma-
trix Tsd to go between our new sheared pixel space and definition space.
Algebraically, this makes the matrix for the ellipsoid have the following
simple form (with asterisks marking nonzero elements):

Since a point is on this surface, if

we can define the matrix
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so that

(3.1)

This means that, for the pixel coordinates , solving for zs is partic-
ularly easy.

My Goal
T he general algorithm is just to scan the pixels on the screen, solve for zs,

multiply by a transform to get to eye space, find a normal
vector in eye space, and do lighting calculations. We can optionally further
transform to definition space to get texturing coordinates.

My intent in this chapter is to squeeze as much air out of this process
as possible to avoid doing a lot of unnecessary arithmetic in the inner loop.
This is basically a game of doing arithmetic in the most convenient coor-
dinate system, and of factoring calculations out of loops.

Gross Clipping
Gross Clipping

L et’s hold off for a second, though. One obvious question to ask before
beginning to draw the sphere is whether it appears on the screen at all.

So let’s first devise a test to detect situations where the sphere is totally
outside the visual screen area. This is useful primarily to get rid of the case
where the sphere is behind us (otherwise, it would project through the eye
upside down onto the screen).

We can reject the sphere if it is outside any one of the clipping planes
defined by the edges of the screen. We’ll name the clipping boundaries XL,
XR, YT , and YB. In pixel space, these have the values

where Nx and Ny are the number of pixels in x and y, respectively. Note the
use of the fact that pixel coordinate 0 covers the range and
coordinate Nx −1 covers the range
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We represent the clipping planes as the column vectors:

I’ve defined these planes so that a point on the visible side of the plane
yields a positive value when multiplied by the vector.

Considering any one of these planes, which I’ll generically call b, we
can identify the four cases shown in Figure 3.1. For a particular plane, the
reject condition is: the center c of the sphere is outside plane b and the
sphere does not intersect plane b. Algebraically, the test is

Now, what coordinate system do we do this calculation in? We know Q
and c in the definition coordinate system, and we know b in the pixel coor-
dinate system. We’ll have to convert one to the other. It is a nice illustra-
tion of the correctness of our transformation matrix mechanism that it
looks the same both ways. For example, we must calculate the expression

as

cdTdpbp

We can think of this as either
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or

Similarly, we must calculate bTQ*b as

bp
TTdp

TQd*Tdpbp

which we can think of as

or

The Algorithm
Let’s turn this into code. For actual calculations, let me remind you that

We would like to have a helper function that calculates bd
TQd*bd. We al-

ready do have VQV from the previous chapter that calculates this same
product for Qd. We can use that if we recall that Qd* = −Qd.

The gross visibility test starts with an array of pixel-space bounding
planes, Bp[i]. I convert the b vectors into definition (d ) space and do cal-
culations there. It looks like this:

bool AnyVisible(const Matrix44& Tdp ,

bool AnyVisible(const Vector4 Bp[4])

{

for (int i=0; i!=4; ++i)
{

Vector4 Bd = Tdp * Bp[i];

if ( Bd[d]<0 && -VQV(Bd)>0 ) return false;
}

return true;

}
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Notice that for each test I checked Bd[d] first since it’s the
easiest one to calculate. If this test fails, VQV isn’t even called. This basic
graphics culling trick probably doesn’t make much difference here since
we’re in an initialization routine, but it’s good to stay in practice.

Inside the Rendering Loop
Inside the Rendering Loop

N ow that we know that the sphere is at least partially visible, we can con-
struct the basic rendering loop. For a given pixel, we calculate

If the product is negative, it means that the sphere doesn’t cover that pixel.
If the product is positive, take its square root.

Once we have the coordinates it’s then a simple
matter of matrix multiplication to get normal vectors and texture coordi-
nates. And which matrices do we multiply?

Texture Coordinates
Texture coordinates come from positions on the unit sphere in definition
space. To get here, simply multiply

psTsd = pd

You can get texture-mapping coordinates by converting pd to spherical co-
ordinates. This requires nasty arctangents. I’ve streamlined this by doing a
reasonable polynomial approximation to arctangent after doing a binary
search on the signs of the coordinates to get to the primary octant. But this
turned out to have the same speed as the library arctangent routine. One
nice thing, though—arctangents only depend on ratios of x, y, and z.
Therefore, you don’t have to calculate the w component of pd.

Normal Vectors
We can get the normal vector (in eye space) from the first three compo-
nents of the plane tangent to the viewed point. Getting the right matrix to
convert ps to this plane is a bit tricky. Take a deep breath. Go . . .

■ Transform ps to definition space (we already did this):

psTsd = pd
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■ Find the tangent plane to the unit sphere at this point. (Note that the
normal vector of this plane points toward the outside of the sphere):

ld =Qdpd
T

■ Transform this plane forward to eye space. We’re transforming planes,
so we must multiply by the inverse of the point transform matrix Tde,
which we are writing as Ted:

le = Tedld

The net result is

We can rewrite this as

(I’ve slipped in the fact that Qd =Qd
T.) We of course calculate the product

of the three matrices in parentheses once outside the rendering loop, and
give it a name.

TsdQdTed
T =M

Note that the matrix M is not a transformation matrix. In the language of
Chapter 9, “Uppers and Downers, Part I” of Jim Blinn’s Corner: Dirty
Pixels (and in Chapter 20 of this book), it is called covariant tensor. It takes a
point (contravariant row vector) and produces a plane (a covariant column
vector).

One thing . . . I use the inverse of Tde instead of the adjoint to trans-
form the plane from definition to eye space. Normally, this doesn’t matter
since the adjoint differs from the inverse by a scalar factor of the determi-
nant of the matrix. But here, if the determinant is negative, the calculated
M matrix will flip the sign of the normal vector, making it point toward the
inside of the sphere. We want to make the normal vector consistently
point outward for proper lighting calculations.

The Algorithm
Since Qd is mostly zeros, you can do all calculation most easily in special
case code. Furthermore, we only need the first three components of the
tangent plane vector, and thus only the first three columns of matrix N.

Matrix44 Ted = Tde.Inverse();

Matrix44 M;

for (int j=0; j!=3; ++j)
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for (int i=0; i!=4; ++i)
M(i,j)=Tsd(i,0)*Ted(j,0)

+Tsd(i,1)*Ted(j,1)
+Tsd(i,2)*Ted(j,2)
-Tsd(i,3)*Ted(j,3);

Range Calculations
Range Calculations

O f course we’re not going to scan the whole screen. Rather, we want to
find the range in xs and ys that the sphere covers and only do calcula-

tions there. We can get this by considering another interpretation of the
matrix ; it’s a 2D curve. If a point is on this curve, then the zs

value is zero and we are on the silhouette. So represents the 2D silhou-
ette curve for the sphere.

Y Range
How do we determine from what area to scan out on the screen? The
ys range comes from finding what value of yH makes the horizontal line ys=
yH tangent to the curve. We represent this line by the 2D homogeneous
column vector and test tangency by multiplying by the
adjoint of :

(If this value is negative instead of zero, the scan line intersects the silhou-
ette curve.) This expands out to the following quadratic equation (recall
that Q* is symmetrical):

(3.2)

where, by the definition of adjoint

Just solve for the two roots of the quadratic to get the floating point maxi-
mum and minimum y range.
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X Range
A scan line algorithm is a successive reduction in dimensionality. For a
given scan line, ys is constant and we can collapse any expressions contain-
ing it down by one dimension. In particular, the expression for zs

2 becomes

(3.3)

where

To determine the desired range for the inner (x) loop, we can just solve this
quadratic to find the two xs coordinates where zs = 0. This will have real
solutions if . I’ll leave it as an exercise for you to determine
that this expression is just the negative of the left-hand side of Equation
(3.2). In other words, our ys range calculation gives us just those scan lines
for which the xs quadratic has real roots. How nice.

Integer Subrange
For both x and y, we want to scan out the integer coordinate range that fits
within the calculated floating point range and that also fits within the
screen pixel coordinate range. I’ll define a routine to clamp a floating point
range (fmin,fmax) to an integer range (0,N), returning the integer
range in (imin,imax).

IRange(float fmin,float fmax,

int* imin,int* imax, int N){

if(fmin>N) return OutsideScreen;
if(fmax<0) return OutsideScreen;
if(fmin<0) *imin=0;
else *imin=fmin+1; // round up

if(fmax>N) *imax=N;
else *imax=fmax; // round down

return OK;}

Note that this can return an outside-screen condition. This should never
happen in the y direction, since our gross clipping algorithm would have
caught it. This could happen in the x direction if the sphere were partially
off the screen to the side. The x range of some of the scan lines near the
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top and bottom of the sphere could be com-
pletely off the screen. See Figure 3.2.

The Rendering Loop
The Rendering Loop

N ow that we’ve calculated all the appropriate
conversion matrices and the y and x ranges

to loop over, let’s see what the main body of the
program looks like. Pseudocode for the two
nested loops looks like this:

calculate Qstar(2,2),Qstar(1,2),Qstar(1,1)

solve for ymin,ymax

IRange(ymin,ymax, &iymin,&iymax, Ny-1);

for (int ys=iymin; ys<=iymax; ++ys)
{

calculate d, e, f

solve for xmin,xmax

if(IRange(xmin,xmax, &ixmin,&ixmax, Nx-1)

==OutsideScreen) continue; // next y

PrepareXCalc
for (int xs=ixmin; xs<=ixmax; ++xs)

{

DoXCalc
}

}

I’ll defer the details of solving for the min and max of x and y until the next
section. Right now we’ll set up a typical forward difference calculation for
zs

2, for the normal vector n, and for the definition space point p. Insert the
following code in the spot labeled PrepareXCalc:

PrepareXCalc

int xs = ixmin;

float zSqrd = (d*xs + e)*xs + f; //value at xs

float dzSqrd = 2*d*xs + d + e; //first difference at xs

float ddzSqrd = 2*d; //secnd difference at xs

Vector3 Nx,Nz,NxXplusN0; // only need 3 dim

Vector3 Px,Pz,PxXplusP0; // only need 3 dim

for (int i=0; i!=3; ++i) {
Nz[i] = M(z,i);

NxXplusN0 [i] = M(x,i) *xs +M(y,i) *ys + M(w,i);

Nx[i] = M(x,i);
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Figure 3.2 Some sphere scan lines offscreen



The innards of the x loop are then

as advertised in Chapter 1.
Don’t forget to rescale the resulting normal

vector to unit length since it doesn’t come out that
way automatically. This is known in the clever
mathematical jargon as “normalizing the normal.”

Results
Results

S o I used this fine algorithm in 1978 to crank out
many pictures of Jupiter and its moons for the

Voyager flybys in 1979. A sample picture appears in
Figure 3.3.

Also in 1979, the Pioneer 11 spacecraft made it out to Saturn. The in-
teresting feature of Saturn, of course, is the rings. Drawing rings called for
a special program in its own right, one I won’t get into here. The space-
craft’s trajectory took it on a very dramatic path under the rings, so when I
tooled up to make a movie of this encounter, it was interesting to pan away
from the planet to see the rings better. The disturbing thing is that when I
panned over to look at the nifty rings, the planet disappeared. See Figure
3.4. Having major planets disappear is always a bad sign.
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Figure 3.4 Sequence of Saturn pictures. Oops, where did Saturn go?

Figure 3.3 Nice picture of Jupiter

Pz[i] = Tsd(z,i);

PxXplusP0 [i] = Tsd(x,i) *xs + Tsd(y,i)*ys + Tsd(w,i);

Px[i] = Tsd(x,i);

}

DoXCalc
float zs = sqrt(zSqrd); zSqrd += dzSqrd; dzSqrd += ddzSqrd;

Vector3 P = zs*Pz + PxXplusP0; PxXplusP0 += Px;

Vector3 N = zs*Nz + NxXplusN0; NxXplusN0 += Nx;

draw pixel using P and N



The Hyperbolic Horizon
The Hyperbolic Horizon

T he solution to this problem came to me from a question my thesis advi-
sor, Martin Newell, once asked: “If you stand on the Earth and look at

the horizon, what shape is it?” Give up? It’s a hyperbola. Why?
The spherical shape of the Earth in eye space becomes a hyperboloid

of two sheets in pixel
space. This is because
the plane containing the
eye and perpendicular to
the line of sight (the ze =
0 plane) intersects the
sphere. This plane is
transformed to the plane
at infinity in screen space
(see Figure 3.5). Recall
our earlier observation
that a circle that inter-
sects the line at infinity
in 2D is a hyperbola.
Similarly, a sphere that
intersects the plane at
infinity becomes a hyper-
boloid. The silhouette of
such a shape is a hyper-
bola. Thus, the maxi-
mum and minimum ys

values in the solution of
Equation (3.2) might not
necessarily define the ys

range that is visible; they
may define the comple-
ment of it.

The hyperbolic problem may also occur during the x loop. For ex-
ample, the original problem of flying around the side of Saturn gives
this. This situation also implies an infinite range in y (see Figure 3.6).

A Better Range Calculation
What we really want for the y range calculation is the range over
which the left-hand side of Equation (3.2) is negative. And what we re-
ally want for the x range calculation is the range over which the right-
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hand side of Equation (3.3) is positive. Let’s unify things a bit by flipping
the sign of Equation (3.2), making it

ayH
2 + byH + c = 0

where

Now we just write a general quadratic solver that returns not just the
roots of a quadratic, but also the range over which the quadratic is positive.
We can apply this to both the y and x range calculation.

There are several situations:
■ There are two roots, and the quadratic is positive between them. Re-

turn the roots.
■ There are no real roots, but the quadratic is always positive. The rou-

tine must return an infinite range. I do so by using the large values
n −32000 and 32000 as flags to represent minus and plus infinity. Later,

when the range is clamped to the screen range, these infinity flag coor-
dinates will be trimmed back to the proper screen boundary values.

■ There are no real roots, and the quadratic is always negative. Return a
failure indication.

■ The quadratic degenerates into a linear equation. Return the semi-
infinite range over which the linear equation is positive.

■ The quadratic degenerates to a constant. Return an infinite range if it’s
positive and a failure if it’s negative.

■ There are two roots, and the quadratic is negative between them. The
two positive ranges (say, for y) are then and . I
indicate this by swapping the min and max values and cleaning up
later.

The code is

PosRange(float a, float b, float c,

float* pymin, float* pymax)

{

if(a!=0.) {
float ba = b/(2*a);

float ca = c/a;

float discr = ba*ba - ca;

if(discr<0) {
if(c<0) return NeverPos;
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*pymin = -32000;

*pymax = +32000;
return OK;}

float d = sqrt(discr);

if(a>0) d = - d; // signal that it’s hyperbolic

*pymax = -ba + d;

*pymin = -ba - d;

return OK; }

if(b!=0) {
if(b>0) {*pymin=-c/b  ; *pymax=32000;}
else    {*pymin=-32000; *pymax=-c/b ;}
return OK;}

if(c<0) return NeverPos;
*pymin = -32000;

*pymax = 32000;

return OK;

}

Selecting the Proper Piece
In the case where our root solver returns two ranges (indicated by the con-
dition ymax < ymin), we would not actually expect to see two distinct sections
of the planet visible. In fact, one of the two branches comes from that por-
tion of the surface behind the observer that “wraps around infinity” due to
the perspective transformation. The wrapped-around branch is the one we
wish to eliminate.

Wrapped-around points are those that undergo a change of sign of
their w component due to the perspective transformation. Algebraically, a
condition for a wrapped-around point is to start with a positive w and end
with a negative one. We can think of this as converting the point to defini-
tion space and testing its w:

or we can think of it as transforming the definition-space plane at infinity
to a local plane in pixel space:
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Either way, the result is the same: we take the dot product of the pixel
space point with the fourth column of Tsd. A negative result means it’s a
wrapped-around point. We update the inside-out range [ ymin, ymax] to a cor-
rectly ordered half-infinite range by simply updating ymin ← −∞ to keep
[−∞, ymax], or by updating ymax ← +∞ to keep [ ymin, +∞].

New Y Range Calculation
To decide between two ranges for y, find a point on one branch and see if it
has been wrapped around. I’ll use the point on the silhouette at ys = ymin.
We find the xs value by substituting y0 = ymin into Equation (3.3). Since we
are at a local extremum of the curve, we expect to get two coincident solu-
tions for the xs range; that is, e2− 4df = 0 in Equation (3.3). Therefore the
xs value at ymin will be

zs is, of course, zero since we’re on the silhouette.
Here is the code for the beefed-up y range calculation. We assume that

Qtilde has been calculated as described in the previous chapter.

New X Range Calculation
The analogous test for a potentially hyperbolic x range is even simpler
since we know the y of the current scan line.

calculate d, e, f

PosRange(d,e,f, &xmin, &xmax);

if(xmin>xmax){
if(xmin*Tsd(0,3)+ys*Tsd(1,3)+Tsd(3,3)<0)

xmin=-32000; // keep [-inf,xmax] branch

else xmax=+32000; // keep [xmin,+inf] branch
}
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calculate a, b, c

PosRange(a,b,c, &ymin, &ymax);

if(ymin>ymax){ //signal for hyperbolic silhouette

if( Qtilde(0,0)==0 )
exit; //sphere not visible

float xmin = -(Qtilde(0,1)*ymin+Qtilde(0,2))/Qtilde(0,0);
if (xmin*Tsd(0,3)+ymin*Tsd(1,3)+Tsd(3,3)<0)
else ymin=-32000; // keep [-inf,ymax] branch

else ymax=+32000; // keep [ymin,+inf] branch
}



Saturn Returns (Mostly)
Saturn Returns (Mostly)

S o, this better x and y range finding worked fine, and Saturn came back.
But . . . there was just one frame where there was a transition from an el-

liptical silhouette to a hyperbolic silhouette that the program still choked
on. Here the silhouette should be a parabola. There is no inherent reason
why this shouldn’t fit into our generalization, but the program died any-
way. I simply didn’t have time to chase down the problem; I had to resort
to analog techniques. I took a pair of scissors and physically cut the bad
frame out of the film.

Saturn Returns (Always)
Saturn Returns (Always)

W hen writing this column, I finally had time to go back and figure out
the parabolic silhouette problem. It comes from our method of opti-

mizing the z range generated by the Tdp matrix. The parabolic silhouette
happens if the eye plane is just tangent to the sphere. If you go back and
look at what our highly clever optimization technique would do in that
case, you find that it will generate a singular matrix for Tdp. Bummer.

In fact, if there is a hyperbolic silhouette (eye plane intersects the
sphere), the Tdp optimization introduces an extra sign flip in zp that I had to
correct for. I won’t go into this since I now have a better way to do the
whole thing.

The new technique merges the two-step transformation preparation
(z optimization and z shearing) into one step that doesn’t have singularity
or sign-flipping problems. It’s also a good exercise in the geometric mean-
ing of the matrices. The method is similar to the technique for finding a
shearing matrix for back side clipping, described in Chapter 2. We turn
the unoptimized Tdp into Tds by replacing column 2. We want to find a new
column that makes the silhouette plane in s space be

In definition space, we have

sd = Tdsss = tdsZ

In other words, the desired column 2 of Tds is just the silhouette plane in
definition space.
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Another way to get the silhouette plane is as the polar plane from the
eye point:

sd =Qded
T

So . . . we need the eye point in definition space. It is

Last time I noted the fact that this expression, just row 2 of the adjoint of
Tds, can easily be calculated using what I call the 4D cross product of col-
umns 0, 1, and 3 of the matrix Tds. The desired new column 2 that turns
Tdp into Tds is then

tdsZ =Qded
T

But we’re not quite done yet. Since we’re in homogeneous land,
we can include an arbitrary scale factor into this new, third column and
still have it shear the silhouette plane the way we want. The scale factor
simply represents a postshear scale in z. We can (in fact, we must) use this
to make sure the front (visible) side of the sphere is on a predictable side of
the zs= 0 plane so that we know which sign of square root to take in Equa-
tion (3.1).

The original perspective transform, Tep, moves the eye
to

with the visible side of the sphere facing negative zp (the minus sign repre-
sents an arbitrary negative number). We want the new transform, Tds, to
flip this around so that with the visible side of the
sphere facing positive zs. It turns out that we get this for free provided we
do one thing. We must normalize the point ed by dividing by its w compo-
nent. This is because the transform Tde contains no perspective and doesn’t
change w. Since we want ed to have a w component of
1, too. We should always be able to do this since the eye point in definition
space should be a local point, and thus have a nonzero w. (Actually, we only
really need to flip the sign of ed to make its w component positive.)

The eye point in sheared pixel space will then be

where

zs = edQded
T
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As long as the eye point is outside the sphere, zs is positive and the region
between the eye and the silhouette plane in definition space will map to
the region on the positive side of the zs = 0 plane.

The Algorithm

Vector4 Ed = Cross(Tdp.Col(x),Tdp.Col(y),Tdp.Col(w));

Ed /= Ed[w];

Vector4 Sd (Ed[x],Ed[y],Ed[z],-Ed[w]);// Sd = Qd*Ed^t

Matrix44 Tds = Tdp;

Tds.setCol(z)=Sd;
Tsd = Tds.Inverse();

Note that I got Tsd by taking an inverse instead of an adjoint. This is to
prevent a negative determinant from confusing things later.

Summary
Summary

T here you have it. With the proper handling of hyperbolic silhouette
curves, the program works for any sphere (or ellipsoid) viewed from any

point and in any direction. Making the algorithm work properly seems to
be mostly a game of minus-sign management since most of the tests hinge
on the sign of some quantity. I’ve spent many hours chasing down rogue
minus signs.

In the next chapter, I’ll discuss some optimizations of the texturing
process that were motivated by the planets.
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Chapter Four: The Truth about Texture Mapping

C H A P T E R F O U R

The Truth about
Texture Mapping

M A R C H 1 9 9 0

This article was originally written in 1990 to document something I did
in 1980. Since then, timing numbers have changed (computers are al-
most 1000 times faster now) and the names given to elements of the
memory hierarchy have changed ( for “disk” read “cache”), but the prin-
ciple remains the same: locality of reference is good.

T exture mapping is a good, cheap way to make a picture look more realis-
tic than it really is. Most of my texture mapping has been devoted to

making pictures of the outer planets. Astrologers tell us that the planets
control our destinies. That may not be true for everyone, but the unique
configuration of the planet Uranus has had its effect on me. It influenced
me to take a close look at how the layout of a texture map in memory af-
fects the performance of the rendering algorithm.

A Trip to the Planets
A Trip to the Planets

M y planet-rendering program basically calculates, for each occupied
pixel on the screen, the latitude and longitude visible at that pixel. It

uses this latitude and longitude to index into a texture map to get a surface
color. The actual texture color comes from bilinearly interpolating the
texture colors at the four texture map pixels that surround that latitude and



longitude. This, along with the shading calculations, gives the net color of
the pixel.

I use texture maps that are 512 pixels wide (east to west) by 256 pixels
tall (north to south). So to look up a value in the map, the longitude is
scaled to the range 0 to 512, and the latitude to the range 0 to 255. The in-
teger parts of these numbers, call them Iu and Iv, give the coordinates of the
upper left of the 2×2 pixel region that must be fetched for interpolation.
The interpolation amount comes from the fractional parts of the scaled u
and v values.

So how do we lay the map out in memory? The most obvious thing is
to lay out the map just as you do for a 2D matrix: by rows. Given a 9-bit Iu

value and an 8-bit Iv value, the index of a map pixel can be found simply by
concatenating the two values to give a 17-bit number:

Originally, each pixel of the map consisted of one byte that encoded a 5-bit
brightness and a 3-bit saturation (white to orange). Nowadays, I use 3-byte
pixels for full color, so I must multiply this index by 3 to get the desired ad-
dress in the texture map array.

Virtual Memory
Virtual Memory

N ow if you have gobs of memory, you can read the whole map into RAM
and all accesses go lickety-split. RAM means just that—access to one

random location is just as fast as access to some other random location.
But suppose you don’t have enough memory for the whole pattern. Or

suppose you have enough memory for one or two maps but you want to
have lots of maps applied to the scene at once. (You can usually depend on
an art director to want more texture maps than is convenient.) What do
you do? You use virtual memory.

With virtual memory, you store the whole database on a disk file and
only read parts of it into real memory as needed. The memory is divided,
both on the disk and in RAM, into medium-sized chunks called pages. You
have fewer RAM pages than disk pages. Each time a virtual memory loca-
tion is accessed, some process looks at the high bits of the address (which
select the page) and translates it either into the location in real memory
where the data is stored or returns an indication that it is not there and
must be read from disk. This latter event is called a page fault. When this
occurs, one of the existing pages in real memory is recycled, usually the
least recently used one, and the desired page of data is read into it. The
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tragedy is when you may later have to reread the page you threw out. But
it can’t be helped.

On big computers and workstations, this is all done with a combina-
tion of special CPU hardware and operating system code. On my small
computer, I had to implement a simple virtual memory simulator that is
used just for the texture memory.

With a virtual memory system (either hardware assisted or software
simulated), you might think that you can just pretend you have zigabytes
of real memory and everything will work out OK. Sorry, you lose. If you
happen to access the memory in a truly random way, or even an unfortu-
nately chosen ordered way, you can give the VM system fits. A classic ex-
ample is the problem of zeroing out a very large matrix with two nested
loops. If the matrix is laid out by rows and your loops are nested so that
they access the memory by columns, you will likely get a page fault on ev-
ery memory access. Bad idea.

The trick to minimizing the page fault rate is to keep your memory ac-
cesses within pages that are already in memory. You do this by keeping the
memory accesses localized as much as possible. So a vital aspect of a tex-
ture map layout scheme is the addressing pattern it implies. Let’s look at
the memory access pattern for a specific example of the texture-mapping
process.

Recall that we are storing the map by
rows. I use a page size of 512 bytes, so each
row takes three pages. I store the three
RGB values consecutively, so the first
170 2/3 pixels are in the first page, and so
forth. Figure 4.1 shows a schematic of the
map with each rectangle standing for one
memory page.

Let me digress for a moment and talk
about this drawing. If I were to draw it
completely to scale, there should be 256
rectangles vertically by 3 horizontally. It
would look like a solid black blob. So the
diagram is merely suggestive of the actual
map. Now if I were to use my computer-
enhanced drawing mechanism to draw the schematic diagram with per-
fectly regular lines, I think it would give the wrong impression about its
literal accuracy. A schematic diagram should look sketchy to help you real-
ize that it is indeed sketchy and should not be taken literally. For this rea-
son, I have drawn it and all other such diagrams by hand using sketchy
lines. I think this is a good idea in general for diagrams that are not meant
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to be geometrically precise. Take note, all you visualizers out there. End of
digression.

Now, the first two planets I had occasion to draw were Jupiter and Sat-
urn (and their moons). If we make a side view of the planet, as is usually
the case with Jupiter and Saturn, this memory page pattern of Figure 4.1
wraps around the sphere, as sketched schematically in Figure 4.2(a). The
scan lines more or less follow the horizontal stripes of the texture map. To
see exactly how well this worked, I tricked up my planet renderer to dump
out the page numbers for each texture access. Figure 4.2(b) shows the ad-
dressing pattern for two consecutive representative scan lines at Y = 222
and Y = 223 (indicated by the thicker horizontal line in Figure 4.2a). The
vertical scale shows memory page numbers, and the horizontal scale shows
the time sequence of the accesses. Seven different pages are accessed on
the first scan line and eight on the next, with five of them common to both
lines.

For the whole image, there were a total of 16,000 texture map ac-
cesses, each requiring a 2×2 array of pixels. The total number of virtual
memory accesses turns out to be 33,028. (It’s not 64,000 because I have in
my code a test to see whether two texture pixels at Iu and Iu+1 are in consec-
utive memory locations and make only one call to the virtual memory rou-
tines if so.) The 33,028 VM accesses generated 446 page faults. The whole
image took 24.8 seconds to render. My profiler tells me that only 3.9 sec-
onds of it were spent in the disk I/O for the page faults. Not too shabby.
(Profilers are my favorite programming toy. I can spend days fiddling with
code after examining the results of a profile test. If you haven’t played with
one, you are missing out on one of the great joys of programming.)
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ThereÕs a Problem with Uranus
ThereÕs a Problem with Uranus

I n 1980 and 1981, the two Voyager spacecraft went past Saturn and it was
time to start drawing pictures of the next planet, Uranus. Uranus, as it

happens, spins with its axis pointing almost directly toward the sun. The
views from the spacecraft, and for my animations, required looking down
at the pole. Now one scan line of the image could cover all the latitudes
from the equator to the pole. If each latitude of the texture map came from
a different memory page, it required accessing half the map for each scan
line! This is very reminiscent of the zero-the-matrix problem done the
wrong way.

For our explicit example, I took Figure 4.2 and rendered it with a 90-
degree rotation of the planet. Figure 4.3(a) is a drawing of the sphere with
texture pages sketched in. Figure 4.3(b) is a plot of the addressing pattern;
note the change of vertical scale. Out of the 16,000 map accesses and
32,992 virtual memory accesses, there were 15,207 page faults! Ouch! The
total run time was 144.4 seconds with fully 119.9 seconds devoted to pag-
ing. And that’s using a RAM disk, so the actual I/O for disk accesses is neg-
ligible. (If I’ve got enough room for a RAM disk, you may ask, why am I
using this virtual memory mechanism? The answer is flexibility. If I need
more maps than will fit on the RAM disk, I can easily switch to getting the
pages from a real disk.)

This might seem to be an extreme case, but a very similar thing hap-
pens when texture mapping any shape where the “grain” of the texture
map is rotated 90 degrees to the direction of the inner loop of the render-
ing program.
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Tiles
Tiles

W e can give our poor disk some time off by using a better memory lay-
out. With the by-rows layout, two pixels that are vertically adjacent

are always in different memory pages. Let us instead try to store geometri-
cally close texture pixels close together in ad-
dress space. Let’s break the map into a series
of 16 by 32 pixel tiles. (For the productions
I have done to date, I have used 32 by 32
pixel tiles, but while writing this column I re-
alized that 16 by 32 works better.) Each tile re-
quires three memory pages (16× 32× 3 bytes
= 3 × 512 bytes). Within a tile the pixels are
stored by rows, so each memory page covers a
roughly square region 16 pixels wide by a little
more than 10 pixels high. Finally, we store the
tiles themselves by rows. The addressing of a
pixel in the map is performed by interleaving

the low bits of the Iu and Iv values with the high bits. The address is con-
structed as follows:

Multiply this by 3 to get the net memory index. This arrangement gives
the memory-page to map-region correspondence sketched in Figure 4.4.
Figure 4.5(a) is a sketch of the planet with this map tiling wrapped around
it. You can visually see that a lot fewer pages intersect a given scan line.
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Figure 4.5(b) is a plot of the addressing pattern. Tiling the map cut the to-
tal number of page faults down to 1492. The total run time was 33.7 sec-
onds (over four times faster!) with 11.8 seconds of it being paging.

In fact, tiling even improved things for the side view. This is because,
with the row layout, lots of pixels of the map from the back half of the
planet were read in unnecessarily since they happened to be in the same
memory page as pixels from the front of the planet. With tiling we only
read in pixels that we have some chance of actually using. Figure 4.6(a) is a
sketch of the geometry, and Figure 4.6(b) is the addressing pattern. The
total number of page faults dropped to 356, and the total run time was
slightly improved, 22.8 seconds with 2.6 seconds of it being paging.

Address Generation
Address Generation

T he address-bit shuffling can itself take up a bunch of time. (Address cal-
culation for a row-ordered map is admittedly much faster, but remem-

ber you may just be generating page faults faster.) I have speeded address
calculation for tiled maps by using a table lookup. I set up a 512-entry ta-
ble for Iu, whose entries contain

and a 256-entry table for Iv, whose entries contain
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Since we are ultimately going to need to multiply by 3, we can build this
into the table, too. If you are using tables, you build as much arithmetic
into the table as possible, so I also added a needed constant to the Iv table
entries to automatically skip over the header in the texture file. So when
doing texture accessing, you only need to add the table values to get the
net address:

Address = Utable[Iu] + Vtable[Iv]

Some Analysis
Some Analysis

T here are two related things going on that improve matters when you lay
out your pattern in tiles. First, you minimize the total number of pages

that need to be accessed for a given scan line. The tile layout does this by
effectively not reading in those parts of the pattern we won’t be using for
this scan line. For the end view and the two scan lines I monitored, this re-
duces the number of needed pages from 158 to 33.

Second, it increases our chances that the set of pages we read in for
one scan line will be almost the same set that we need for the next scan
line. And if you have enough real memory to hold one scan line’s worth of
texture, you will be less likely to need to read a particular page more than
once. The advantages are substantial. The minimum number of page-ins
possible happens when you read in each necessary page only once. (A nec-
essary page is one that contains some visible bit of the texture.) Because of
perspective, this will be a bit less than half of the whole map, a bit less than
384 for our test image. Compare this with 446 and 15,207 for the row-
ordered map, side and end views. For the latter, this meant that each page
had to be reread about 40 times. No wonder it was so slow. Now compare
this with 356 and 1492 for the tiled map, side and end views.

Total rendering times appear in Figure 4.7. The dark gray bars are
times spent actually calculating pixels, and the light gray bars are times
spent doing paging.

Other Ideas
Other Ideas

I ’ve described this whole thing using very specific numbers for page sizes,
RAM size, and so on. But how does this work with hardware virtual

memory environments? What if there are lots of RAM pages available but
you also have lots of simultaneous texture maps? How about using an
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addressing pattern that totally interleaves the bits for u and v? This would
make a set of tiles within tiles within tiles, a sort of fractal addressing
scheme. This could improve locality even more, but I haven’t tried it my-
self. Any sort of tiling of the map will almost certainly improve matters,
but your mileage, as they say, may vary.
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Chapter Five: Consider the Lowly 2×2 Matrix

C H A P T E R F I V E

Consider the Lowly
2×2 Matrix

M A R C H 1 9 9 6

I f you’re into computer graphics you gotta love matrices. But sometimes
matrices are so . . . complicated. They have determinants, eigenvalues,

and singular value decompositions. What does all this stuff really mean?
What does it mean, for example, to take the square root of a matrix? How
about the logarithm of a matrix?

I have built up my intuition about matrices by playing extensively with
the simplest form, the lowly 2×2 matrix. These almost look too simple to
be interesting, but they show off many of the properties of larger matrices.
Better yet, we can write out explicit formulas for quantities that are hard to
compute for larger matrices. This gives me a sense of concreteness about
the relationships between the various matrix properties. Even so, some of
the derivations here are probably at the limit of most people’s appetite for
algebra.

Our Friend
Our Friend

O K. Here’s the deal. A 2×2 matrix is simply the linear transformation of
one 2D vector to another.

(5.1)
A B

x y x y
C D
 

   ′ ′=    
 



An example of such a transformation appears in Figure 5.1. The arrows
connect the input points to their transformed destination points. We start

with points on a unit circle and find that they
transform onto an ellipse at some orientation
and eccentricity. Finding the eccentricity and
orientation of the ellipse is an important part of
understanding the matrix.

Basic Stuff
Basic Stuff

T he basic matrix properties are easy to write for
this matrix.

The Trace
A + D

We’ll see later why this is an interesting quantity
to give a name to.

The Determinant

There is a simple geometric interpretation of the determinant. It’s the
amount by which the matrix scales the area of shapes. We can see this by
looking at the transformation of the unit square in Figure 5.2. The point
[1,0] transforms to [A,B], and the point [0,1] transforms to [C,D]. The area
of the resulting parallelogram is

If the determinant is zero, it means, of course, that the parallelogram is
squashed flat (zero area) along some line. If the determinant is negative,
the square has turned inside out; the matrix has a mirror reflection.

As another geometric interpretation, we will see later that the deter-
minant is the product of the semimajor and semiminor axes of the ellipse
of Figure 5.1.
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The Adjoint

The Inverse
Only defined if ∆ ≠ 0:

Factoring
Inverting matrices takes a lot of work for larger matrices. One basic tool
for doing this is factorization. The idea is, given some matrix M, to find
matrices L and N whose product LN = M. If these new matrices have
some simple structure, so that they can be inverted easily, we can get the
inverse of M simply by

M−1 =N−1L−1

The most common factorization of M is for L to be lower-triangular and
N to be upper-triangular. For 2×2 matrices, this looks as follows (the *’s
stand for values we must solve for):

It doesn’t take much work to find the proper unknown values:
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If A is zero, this isn’t much help. If that’s the case, we can do partial pivot-
ing, which, in the 2×2 case, is tantamount to rewriting our defining Equa-
tion (5.1) by swapping the x and y on the input vector, and correspondingly
swapping the two rows of the matrix:

We can factor this new matrix into

If both A and C are zero, the matrix is singular and we’re out of luck.

Eigen Stuff
Eigen Stuff

A n eigenvector is a vector that does not change its direction when trans-
formed by the matrix. It may, however, change its magnitude, and the

factor by which that changes is called the eigenvalue λ. Algebraically, this
means that

(5.2)

Notice that any scalar multiple of an eigenvector is also an eigenvector;
only the direction of the eigenvector is important.

So let’s find explicit formulas for x, y, λ in terms of A, B, C, D. This is
perfectly feasible for our simple 2×2 matrix even though it’s virtually im-
possible for larger matrices. The trick, however, is making sure our for-
mulas work for all possible values of A, B, C, D without having to do
unpleasant things like divide by zero.

Eigenvalues
We start out by fiddling a bit with Equation (5.2) to turn it into

(5.3)

Since this new matrix squashes the eigenvector flat, it must be singular.
This gives us a way to solve for the eigenvalues by solving the so-called
characteristic equation:
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The solutions are

(5.4)

You can easily verify that their sum is the trace of the matrix

λ1 + λ2 = A + D

and their product is the determinant

λ1λ2 = AD − BC

Since the eigenvalues are solutions to a quadratic equation, their real-
ity and multiplicity depends on the sign of the discriminant of the charac-
teristic equation. Since I’ll be using this quantity a lot, I’ll give it a name, ρ:

We then have three possibilities:

1. ρ > 0: two distinct real eigenvalues
2. ρ = 0: one real eigenvalue
3. ρ < 0: a complex conjugate pair of eigenvalues

If we fiddle with ρ a bit, we can get it to look like

This makes it obvious that, if the matrix is symmetric (B= C ), we have ρ ≥
0 and real eigenvalues are guaranteed. If not, the existence of real
eigenvalues is more iffy.

Eigenvectors
If an eigenvalue λ is complex, there is no corresponding real eigenvector.
This is the situation, for example, for rotation matrices; no vectors retain
their same direction.
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On the other hand, if we have a real eigenvalue λ, we can charge ahead
and find its corresponding eigenvector. Start by plugging λ into Equation
(5.3). A little head scratching and we come to the conclusion that there are
two possible candidates that satisfy this:

(5.5)

The existence of these two possible eigenvector formulations is perfectly
fine. Remember, it’s only the direction of an eigenvector that’s important,
and these two vectors point in the same direction. You can see this by tak-
ing the ratios of their x and y coordinates. The condition that the x and y
ratios are equal

is just the characteristic equation again.
The fact that we have these two choices will actually come in handy.

For example, look at what happens if C = 0. The eigenvalues simplify
down to λ1 = A, λ2 = D, and Equation (5.5) gives us the following candi-
dates for the eigenvectors of λ1:

Obviously, we prefer the second candidate. We can’t just use the second
choice all the time though; it will have its own problems if B = 0 and A =
D. In that case, we still have λ1 = A but Equation (5.5) gives us the follow-
ing candidates for the eigenvector:

Now we wish we’d picked the first candidate. There are similar problems
with the choices for v2. What we need is a good algorithm for picking
which of the two candidates to use. One algorithm would be to pick the
choice that has the longest Euclidean length. That would work, but it gen-
erates a lot more arithmetic than the method I will show now.

As a first step, let’s get the big picture by inserting the definition of λ
into our eigenvector candidates. The choices are

(5.6)
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There are two key expressions in the choices above:

We can make the candidate selection in such a way that we only need one
of these values. We pick the one that makes sure we only need to add a
positive number to a positive square root, or a negative number to a nega-
tive square root. This gives the following algorithm:

if (A − D > 0)

if (A − D < 0)

There is a third possibility: A − D = 0. To see what to do here, we first
plug this condition into Equation (5.6) and simplify to get

We could only have gotten this far if the eigenvalues are real, so we know
that B and C must have the same sign. Now, this can still mess up if either
B or C are zero, but in each case there is a clear choice: if B= 0, take candi-
date one; if C = 0, take candidate two. Rather than making two tests for
zero (always a dicy proposition with floating point numbers), I will make
the decision based on which of B or C are smaller. Putting this all together,
we get the algorithm in Table 5.1.
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There is one final gotcha. What if A = D and B = C = 0? In other
words, the original matrix was

The eigenvalue calculation gives us two equal real eigenvalues λ = A. Ac-
cording to Equation (5.5) both of our candidate eigenvectors are [0 0], ob-
vious rubbish. Let’s go back to the primary source. Putting A= D and B=
C = 0 into Equation (5.3), we find that the eigenvalue must satisfy

In this case, any vector is an eigenvector. Such cases are called degenerate.
There is an important thing to note here. There is no single global

formula for calculating eigenvectors, even for 2×2 matrices. A proper al-
gorithm must have “if” statements in it to choose between several differ-
ent formulations that each only work for a subset of all the matrices. This
gets even worse for larger matrices and is why eigenvalue calculation is
typically done by some sort of numerical iteration.

Orthogonality
For some further fun, let’s take a look at the dot product between the two
eigenvectors. Constructing this from Table 5.1, we get the results shown
in Table 5.2.
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We can see immediately that if the matrix is symmetric (C = B), the dot
product is zero; in other words, the eigenvectors are perpendicular. In fact,
a little study reveals that the dot product is zero only when C = B.

Examples
Let’s look at some examples to see what sorts of things can happen with
eigenvectors. Figures 5.3 through 5.8 show a collection of various matrix
properties and what a representative transformation looks like. To make
the source/destination arrows less cluttered, I have chosen sample matri-
ces whose output ellipse happens to be larger
than the input unit circle.

Figure 5.3 shows a uniformly scaled identity
matrix. The eigenvalues are equal, the matrix
is degenerate, and all vectors are eigenvectors.
Figure 5.4 shows a uniformly scaled rotation.
There are no real eigenvalues, and no eigen-
vectors. All vectors change direction when un-
dergoing transformation.

Figure 5.5 shows a symmetric matrix with
two real, unequal eigenvalues. The eigenvectors
are perpendicular (all vectors on the dotted lines
are eigenvectors).

Figure 5.6 shows a nonsymmetric matrix
with two real eigenvalues, both positive but un-
equal. Note that the eigenvectors are not per-
pendicular. Figure 5.7 shows another non-
symmetric matrix with two real eigenvalues.
This time one is positive and the other negative.
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Figure 5.3 Uniformly scaled identity
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The horizontalish dashed line repre-
sents eigenvectors corresponding to
the positive eigenvalue; the matrix re-
flects across this line. The verticalish
dashed line represents the eigenvec-
tors corresponding to the negative
eigenvalue; vectors along this line re-
verse direction. Finally, Figure 5.8
shows a nonsymmetric matrix that has
one real (double) eigenvalue and one
eigenvector.

Definite Stuff
Definite Stuff

O ne of my favorite uses for symmetric
matrices (where B = C) is to repre-

sent homogeneous polynomials:

(5.7)

If this expression has no real roots, that is, it’s positive (or negative) for all
[x y], the matrix is called positive (negative) definite. What condition on A, B,
D is necessary to guarantee this? Turn the question around. If a matrix is
not positive/negative definite, there must be some real roots [x y] that give

Ax2 + 2Bxy + Dy2 = 0

Use the quadratic formula to get

In order for this not to happen, we simply must make sure this has no real
roots. That is,

positive/negative definite ⇔ B2 − AD<0 (5.8)

We can separate the positive and negative cases by plugging the vectors
[1,0] and [0,1] into Equation (5.7) and noting the sign. We have
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The condition of being positive definite is the same as the condition of
having two positive eigenvalues, as in Figure 5.5. We can see this by put-
ting B = C into Equation (5.4) to get the eigenvalues of a symmetric
matrix:

If the matrix is positive definite, then and the value of the
square root is less than We are forming the two eigenvalues by
adding and subtracting a smaller positive value from a larger positive
value: presto, two positive eigenvalues.

Knowing that a matrix is positive definite is useful because it allows
Cholesky factorization. This factors the matrix into

where G is a lower-triangular matrix. It’s simple to show that

This is pretty trivial for 2×2 matrices, but of course, it’s a bigger deal for
larger matrices. A variant of this avoids square roots by making the lower-
triangular matrix have 1s on the diagonal and including a separate diagonal
matrix:

Don’t panic about the divisions or square roots. In a positive definite ma-
trix, we always have A > 0.

A New Orientation
A New Orientation

W hy is the trace of the matrix an interesting quantity? Why give a name
to the sum of the diagonal elements? Why not choose the sum of the

first column minus the square root of the upper-left element, or some-
thing? Here’s why.

The matrix represents a transformation of one vector into another.
The actual numbers for x and y, however, are somewhat an accident of the
coordinate system we use. We want to see what happens to the geometric
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form of the vector independent of the coordinate system. If we chose a dif-
ferent x axis and a different y axis, what would change about the transfor-
mation, and what would stay the same? If we chose the new vector [p,q] as
our x axis and [r,s] as our new y axis, what should the elements in the trans-
formation be to map an input vector into the same result vector? (This is
similar to the derivation of a transformed matrix in Chapter 9, “Uppers
and Downers, Part I” of Jim Blinn’s Corner: Dirty Pixels). Our new input
and output vectors would be

and

The vector transformation equation

becomes

so that

(5.9)

We can think of this the way mathematicians do—as representing the
same vectors in a new coordinate system—or we can think of it the way
computer graphicists do—as transforming the vector and the matrix
within the current coordinate system.

Let’s get adventurous and work this all the way out. We get

Now let’s play with it.

A New Orientation 81

t t

p q
x y x y

r s
  ′ ′  ′ ′=     

A B
x y x y

C D
 

   ′ ′=    
 

1

t t t t

p q A B p q
x y x y

r s C D r s

−      ′ ′  =           

1t t

t t

A B s q A B p q
C D r p C D r sps qr

−     
=     −  −    

t t

p q
x y x y

r s
 

   =    
 

2 2

2 2

( ) /( )

( ) /( )

( ) /( )
( ) /( )

t

t

t

t

A psA rsB pqC rqD ps rq

B qsA s B q C sqD ps rq

C prA r B p C rpD ps rq
D rqA rsB pqC psD ps rq

= + − − −

= + − − −

= − − + + −

= − − + + −



General Invariants
Let’s find the trace of the transformed matrix by adding the first and last
equations above. Lo and behold, lots of stuff cancels out and we get

At + Dt = A + D

The trace doesn’t change if we change coordinate systems. Of course, that
is why the trace is an interesting quantity; it is invariant under transforma-
tion. I remember that it took me a long time to figure this out when I was
first learning about matrices. The math books defined the trace, but it
didn’t immediately sink in why the sum of the diagonals was something
worth giving a name to.

It so happens that the determinant of a matrix is also invariant.
Proving this is a bit more grisly. But glutton for punishment that I am, I
have actually done it even though I knew the answer in advance. I’ll give
you a hint on how to organize it. Write it out by first collecting the coef-
ficients of A2, then those of AB, and so on:

Most terms cancel, and you finally get what you expected:

AtDt − BtCt = AD − BC

Now that we have determined the invariance of the trace and determi-
nant, we can see that the eigenvalues, being simple functions of A+ D and
AD − BC, also don’t change when we change the coordinate system. The
individual x and y components of the eigenvectors, however, do change
with transformation.

If two real, nonequal eigenvalues exist, then there is a particularly in-
teresting transform we can apply to the matrix, one that maps the eigen-
vectors to the coordinate axes. That is, given

We want unit vectors in space to map to the eigenvectors in [x,y]
space. We can do this easily by making up the transformation matrix by
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stacking the eigenvectors on top of each other. Using the formulas above
for eigenvectors, the result is

A little refreshing algebra using this transform verifies that

In other words, if the eigenvalues exist, there is a coordinate system in
which the transformation is just a scale along the two axes by the eigen-
vectors. Figure 5.9 shows this for the two matrices of Figures 5.5 and 5.6.
Note that for the symmetric matrix, the new coordinate system is a simple
rotation of the old one.

Rotational Invariants
If we use a less general pqrs matrix, we can expect more quantities to be in-
variant. For example, if we only use pure rotations

(5.10)
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Figure 5.9 Special coordinate systems for matrices with nonequal real eigenvectors
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we get

Subtracting the middle two equations gives us the new invariant:

Br − Cr = B − C

The property of being symmetric (B − C= 0) or nonsymmetric (B− C≠
0) is now invariant. Likewise, this means that the condition of being posi-
tive definite is a rotational invariant.

A New Formulation
A New Formulation

I ’m now going to drop something on you that I’ve learned by long and
hard toil in the matrix trenches, but that we’ve seen lots of hints of

above—most 2×2 matrix operations are a lot easier to do algebraically if
you write them in terms of the sum and difference of the matrix compo-
nents. That is, we’ll define E, F, G, and H so that

(5.11)

One way of looking at this is to say that we are dividing up the matrix into
the sum

The first of these is a pure rotation by the angle tan−1 (H/E ) times
a uniform scale factor of The second is a mirror reflection
times a uniform scale factor of By looking at its eigenvectors,
we can find that the reflection is across a line at an angle of tan−1 (G/F )
with the x axis.

Even More Definite
One of the first benefits of our new notation is that it makes the condi-
tion of being positive (or negative) definite easier to understand. First,
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remember that we are dealing with symmetric matrices here, so H = 0.
Now plug the new notation into Equation (5.8) and get, with some minor
fiddling

We can get even more intuition about this by plugging our new nota-
tion into Equation (5.7), while rewriting the test vector [x, y] in polar
coordinates:

In other words, we have the constant E added to a sine wave of amplitude
As long as is greater than the amplitude , the

net algebraic sign won’t change. In this case, the condition of being posi-
tive definite versus negative definite just depends on the sign of E. Our
new condition is then

General Invariants
Let’s now see what our general invariants look like in terms of this new no-
tation. The trace is

The determinant is

The eigenvalue discriminant is also invariant since a little algebra can
show that
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(5.12)

The eigenvalues are

(5.13)

If the matrix is symmetric, then H = 0, and we see another demonstration
that real eigenvalues are guaranteed to exist. In general, real eigenvalues
exist any time ρ is positive. Combine this with a slight fiddling of Equation
(5.12), and you get a simpler condition for real eigenvalues:

∆ < E 2

This shows, for example, that a matrix with a negative determinant always
has real eigenvalues.

Rotational Invariants
The new invariant we got when we specialized to just rotations now
looks like

B − C = 2H

Since H and F 2 + G2 − H 2 are invariant, F 2 + G2 is invariant.
As another, more revealing way to see this, form the following differ-

ence and sum of the rotated matrix elements:

Applying double angle formulas and the definition of F and G, this gives us

So, in particular,

Fr
2 + Gr

2 = F 2 + G 2
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If we start with a symmetric matrix (H= 0), we can perform a rotation
to get Gr = 0 by solving

This means that we rotate by the angle

Now that Gr = Hr = 0, we have a diagonal matrix; that is, any symmetric
matrix can be rotated to make it a diagonal matrix. This gives us a more el-
egant way of finding the eigenvectors (but only for symmetric matrices).

Singular Value Decomposition
Singular Value Decomposition

T he matrix wizards1 tell us that any matrix can be decomposed into a rota-
tion, a nonuniform scale, and another rotation by another (possibly dif-

ferent) angle. For a 2 × 2 matrix, this looks like

(5.14)

In order to believe this, we must be able to solve for the angles and scales
in terms of A, B, C, and D. Start by multiplying out the matrix above to get

Then we simply solve the four equations above for w1, w2, β, γ and we’re
golden. After a bit of thrashing around, we remember our magic reformu-
lation. We add and subtract elements and apply a few trigonometry addi-
tion formulas and voila:
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1 Press, H., Teukolski, S., Vetterling, W., Flanners, B., Numerical Recipes: The Art of Scientific Computing,
Cambridge University Press, 1992.



Now things look easier. One more crank turn gives us

(5.15)

You can take it from here.
There are two situations when this has a bit of a hiccup. The first is

when F = G = 0. If we blindly stuff this into Equation (5.15), we get that
but that γ − β is undefined, or rather, that it can have

any value. Further thought shows that in this situation, our original matrix
was of form

In other words, it is a uniformly scaled rotation. The formula for singular
value decomposition degenerates into

So if the two singular values are equal, the angles are not unique. Any two
values of β and γ that add up to tan−1(H/E) will work.

The other hiccup is when E = H = 0. Here we find that
and that γ + β is undefined. The original matrix

must have been of the form

This is our uniformly scaled mirror reflection about a line at an angle of
to the x axis. Again, we get that the angles β and γ are not

unique, but must simply satisfy γ − β = tan−1 (G/F).
We now believe that the factoring in Equation (5.14) is always possi-

ble. Now imagine what happens when we pass a unit circle through it. It
will first rotate (no change in shape), then scale by the singular values (now
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it’s an ellipse), and then rotate again (ellipse tilted at an angle). In other
words, the semimajor and semiminor axes of the ellipses of Figures 5.1,
5.3, and 5.9 are the singular values of the matrices. And the angle of tilt of
the ellipse equals γ.

Invariants of SVD
How do the singular values fit into the matrix invariant picture? Putting
the rotational invariants (E, H, F2 + G2) into Equation (5.15), we can see
that (w1, w2, γ + β) are also rotationally invariant. We can also see this by
noting that a rotation of a matrix will add an angle to β while it subtracts
the same angle from γ, all the while leaving w1 and w2 alone.

Comparison with Eigenvalues
Compare the formulas for eigenvectors and singular values:

You can see that, though a matrix may or may not have real eigenvalues, it
always has real singular values. The product of the eigenvalues and of the
singular values is always the same (it’s the determinant):

λ1λ2 = w1w2 = E2 − F2 − G2 + H2 = ∆

Only if H = 0 (symmetric matrix) are the eigenvalues and singular values
the same:

λ1 = w1, λ2 = w2

Summary of Invariants
Summary of Invariants

T here are two independent general invariant quantities for a 2×2 matrix.
For each of our four ways of expressing the matrix, they are

A + D AD − BC

E

λ1

w1w2

plus any algebraic combinations of them.
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There are three independent rotational invariants, the above two plus
one more. With some simple algebraic fiddling, the catalog can be more
easily written as

A + D B − C AD − BC

E H F2 + G2

λ1 λ2 Angle between eigenvectors

w1 w2 γ + β

plus any algebraic combinations.
Finding these invariants, as well as solving several other matrix prob-

lems, is easiest using the E, F, G, H formulation of the matrix elements.

Visualizations
Visualizations

I don’t know about you, but to me all these formulas and properties are
beginning to merge into a soft, gray blur. Let’s try to make sense of this

with a . . . wait for it . . . visualization. The A, B, C, D values of an arbitrary
2×2 matrix generate a 4D space. We could draw a diagram of this 4D
space and divide it up into regions for the various properties, but visualiz-
ing in 4D is kinda hard. Let’s instead see if we can find a reasonable proj-
ection down into fewer dimensions. I’ve flailed around with this for a
while, and here’s my favorite projection.

Applying ancient wisdom, we first convert the matrix to the E, F, G, H
form. Then we realize that the first step of singular value decomposition,
Equation (5.15), basically involves rewriting the two vectors (E,H ) and
(F,G) in polar coordinates. I’ll give names to the lengths of these vectors:

We can diagram some basic matrix properties using just these two axes.
For example, if the matrix is a pure rotation. If

the matrix is a pure mirror reflection. And in any
case, the determinant is

Figure 5.10 shows our first visualization of these properties. Each point on
this chart represents many matrices, in fact, a two parameter set: the pa-
rameters being the angles tan−1 (G/F) and tan−1(H/E).

Now let’s visualize some other matrix properties. First, take a look at
Table 5.3, a catalog of various properties written in terms of E, F, G, H.
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Now recall that the three
rotational invariants of a
matrix are E, H, and
These, then, make good
candidates for the axes of
a 3D plot. Imagine rotat-
ing Figure 5.10 around
the axis, sweeping
the ∆= 0 line into a cone,
and you get Figure 5.11.
Matrices with negative
determinants are inside
the cone; those with posi-
tive determinants are out-
side. Each point in the
EH plane now represents
a single matrix, one that
is a uniformly scaled ro-
tation. All the pure rota-
tions lie on the unit circle on the EH
plane. Each point above the EH plane
(where ) still represents a multi-
tude of matrices, those with various val-
ues of tan−1 (G/F). Applying a rotation to
a matrix via Equations (5.9) and (5.10)
will only change this angle, but will not
change its E, H, coordinates in this
figure.

Now let’s add the various conditions
on eigenvalues to make Figure 5.12. Here
a V-shaped trough represents the zone of
real eigenvalues; inside the trough there
are two nonequal real eigenvalues, on the
surface of the trough there is one unique
real value, and outside the trough the
eigenvalues are complex. See how the cir-
cle of rotation matrices is in the complex eigenvalue region. See how the
cone of singularity lies inside and tangent to the trough, so any matrix with
a negative determinant has real eigenvalues. See how the plane of symmet-
ric matrices, H = 0, is also inside the real eigenvalue trough. Degenerate
matrices are on both the trough and the H = 0 plane; this is the E axis.
Positive and negative definite matrices are on the shaded portion of the
H = 0 plane.
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Square Root of a Matrix
Square Root of a Matrix

N ow let’s get back to one of the problems posed in the introduction to
this chapter: find the square root of the matrix. That is, we want to find

a, b, c, d such that

The four matrix elements give four equations for the four unknowns.
We just solve for a, b, c, and d. Just. Again, hack and bash on these got
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Table 5.3 Summary of matrix properties

Pure rotation
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me nowhere until I discovered the sum-and-difference reformulation; we
want to find e, f, g, h such that

This gives

Add and subtract pairs of equations to get

(5.16)

Now we can mash these together to get an equation for e:

(5.17)

so that
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If the determinant is negative, we’re dead; the matrix has no real
square roots. Otherwise, there can be zero, two, or even four possible val-
ues for e, and hence four possible square roots of our matrix. It’s a fascinat-
ing exercise to work out the various constraints on E, F, G, and H that
determine the number of roots.

If one of the roots of e in Equation (5.17) equals zero, it means that we
must have had

F2 + G2 − H2 = 0

This is just the condition that the eigenvalues are equal. Looking at Equa-
tions (5.16), we can see that this double root at e = 0 further implies that
we had to have started with the situation where F= G=H= 0. The orig-
inal matrix had to have been

There are a whole continuum of square roots; any matrix for which f 2 +
g2 − h2 = E. The square root matrix looks like

As a check, square this and lo and behold:

On the other hand, for each nonzero e root of Equation (5.17), we can
easily solve for f, g, and h using Equation (5.16), and from that get a, b, c,
and d. I’m going to do a rabbit trick, however, and do this in a way that
presents the result in a particularly amusing way. I’ll factor out the quan-
tity 1/2e from the desired matrix and then plug in the values from Equa-
tion (5.16):

We find that the square root is
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That is, the square root of a matrix is that same matrix plus or minus the
square root of the determinant on the diagonals, times a global scale fac-
tor. The four roots come from the and from the overall±1 scale fac-
tor incurred when we get e from .

How does finding the square root matrix relate to singular value de-
composition? I originally thought that the square root of a matrix with sin-
gular value parameters (w1, w2, β, γ) might be a matrix with the SVD
( ). Then I had fantasies that a matrix to any arbitrary
power n could be constructed from the SVD parameters (w1

n, w2
n, nβ, nγ).

Alas, this is not the case. For one thing, since

we know that the value of γ − β must be the same for a matrix and its
square root. Furthermore, you can show that it’s the eigenvalues that get
square-rooted, not the singular values. To see this, let’s recall our defini-
tion of the eigenvector discriminant

Equation (5.16) then tells us that

Then

Musings
Musings

W hat, then, is the logarithm of a matrix? Well, any function that has a
Taylor series should be applicable to matrices, under some sort of con-

vergence criterion. . . .
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Chapter Six: Calculating Screen Coverage

C H A P T E R S I X

Calculating Screen
Coverage

M A Y 1 9 9 6

W hen drawing a 3D object, it is sometimes useful to find a rectangle on
the screen that completely encloses the object. This can be used to

minimize screen-update and z buffer–clear regions. If the entire object is
visible within the screen boundaries, this calculation is easy. You just find
the minimum and maximum x and y screen coordinates. If the object ex-
tends outside the screen boundaries in one or more coordinates, this cal-
culation is a little trickier. Simply extending the enclosing boundaries to
the entire screen dimensions is overly conservative. This chapter describes
a way to determine a reasonable screen extent enclosing an object even if
some points are off the screen, or, even worse, behind the viewer’s head.
It’s also a good exercise of your intuition about the homogeneous perspec-
tive transformation.

The calculations for this feat have much in common with those you
are probably already doing for clip culling, so let’s first review this
technique.

Review of Clip Culling
Review of Clip Culling

C ulling is the process of making quick decisions about some geometric
problem by first doing tests that are simple arithmetically, capable of

identifying many commonly occurring situations, but not guaranteed to



find a definitive answer. In other words, it can return three answers: yes,
no, and maybe. If these simple tests fail, we go through progressively more
complex tests to identify more involved but rarer situations.

When applied to the clipping of a geometric shape, culling can quickly
place the shape into one of three categories: completely visible, completely
invisible, or something more complex. (I’ll use the word visible here to
mean, “lies within the screen clipping boundaries.”) I’ve described this
clip-culling process in some detail in Chapter 13, “Line Clipping,” of Jim
Blinn’s Corner: A Trip Down the Graphics Pipeline. I’ll give a quick review
here.

First of all, we don’t need to test every vertex in the object. Instead, we
will pick a (presumably small) set of points such that the object lies com-
pletely within their convex hull. The idea is that if all these hull points are
within the screen region, then the whole object is, too. And if all the hull
points are outside one of the screen boundaries, then the whole object
is, too.

Then, for each frame, we transform all the hull points of our object by
a homogeneous 4×4 matrix into a coordinate space in which it’s conve-
nient to do clipping. This transform includes the modeling, viewing, and
homogeneous perspective transformations to map the viewing frustum to
a parallel-sided rectangular brick after homogeneous division of all points
by their w values (though it won’t do the homogeneous division unless it’s
absolutely necessary). It is common to define this brick-shaped clipping
space as extending from −1 to 1 in both x/w and y/w. However, in my col-
umn that became Chapter 13, “Line Clipping,” of Jim Blinn’s Corner: A
Trip down the Graphics Pipeline, I made the case for including an extra scale
and offset to scrunch this to the range 0 to 1. For purposes of this discus-
sion, I’ll generalize and use the symbolic value XL to represent the left
clipping boundary and XR to represent the right boundary.

From now on, I’ll only talk about the x coordinates. You can do the
calculations for the y and z coordinates in a similar manner.

The next step is, for each hull point, to calculate a value for each clip
boundary that tells whether that point is inside or outside the boundary.
For the left and right boundaries, these will be

A point is visible if both L and R are positive. (We can see here why
XL= 0, XR=1 are beneficial.) The signs of L and R give flag bits for “out-
side to the left,” Lout, and “outside to the right,” Rout. We will combine
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these sign bits into one flag word sLR. I’ll encapsulate these data and cal-
culations in the following C++ class:

const int Rout=1, Lout=2;
struct ClipPoint{

float x,y,w;

float L,R; int sLR;

ClipPoint(float xx,float yy,float ww)

: x(xx), y(yy), w(ww) {;}

CalcCodes() {

sLR=0;
L = x - XL*w; if (L<0) sLR=Lout;
R = -x + XR*w; if (R<0) sLR=Rout;}

};

The whole clip-culling operation then consists of going through an
array of hull points, P, calculating their flag words, and forming a cumula-
tive AND and OR of them. Again, more detail and justification is provided
in the chapter on line clipping referenced above.

int Ocumulate=0, Acumulate=�0;

for (int i=0; i!=NbrPts; ++i) {
P[i].CalcCodes();

Ocumulate = P[i].sLR;

Acumulate &= P[i].sLR; }

if(Ocumulate==0)
{exit} //Trivial Accept, whole object visible

if(Acumulate!=0)
{exit} //Trivial Reject, whole object not vis.

// Maybe visible.

If the calculation falls out the bottom, the object must be clipped by the
full clipping algorithm.

The Screen Extent
The Screen Extent

N ow let’s see how to calculate the screen extent of these hull points.
(Actually, we are going to get the clip space extent; a simple scale and

offset can turn this into pixel space.) For reference, let’s look at Figure 6.1
to see what’s happening in homogeneous space. For a more intuitive feel,
you could also interpret this diagram as representing the situation before
the perspective transformation by thinking of the w axis as the z axis (a
perspective transformation sets w to the preperspective z value).
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The darker gray region represents those points in front of the eye that
project to the visible screen region (the dark line); this is where sLR==0.
The lighter gray region represents the points that are behind the eye but
would project into the screen region if we simply did the x/w divide. These
points are, however, not visible.

We’ll calculate the screen extent by maintaining a running coverage
range, Xmin and Xmax, and looping through the hull points, extending
this range as necessary.

If sLR==0 for the next hull point, the situation is trivial; just update
the range if the new point extends outside it.

if((x/w)<Xmin) Xmin=x/w;
if((x/w)>Xmax) Xmax=x/w;

If sLR==Lout, the new point is in the left quadrant of the x,w plane
(see Figure 6.2). All possible polygons connecting this new point with the
current span will hit the left edge of the screen, so any points in this region
should trigger an update of Xmin to push it out to the minimum value of
XL. As an aside, note that if the point is in the negative w region of (sLR=
=Lout), then its projection will map to the right of the screen. This is an
illusion of homogeneous perspective. All edges connecting it to the cur-
rent range will only hit the left edge of the screen, and the update of
Xmin=XL is still the correct thing to do.

The situation where sLR==Rout is symmetrical with sLR==Lout.
Update Xmax to XR.

Now for the interesting situation: points in the light gray sLR==
(Lout+Rout) region. There are three possible cases, depending on ex-
actly where the new point is in the region.

In the first case, shown in Figure 6.3(a), the new hull point projects to
a visible screen coordinate to the right of Xmax, but this is an illusion. In
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fact, all the visible points on the lines connecting
the new point to the existing span will project to
points to the left of Xmin. In this case, the ap-
propriate action would be to extend Xmin to the
left edge of the clip region, XL.

In the second case, Figure 6.3(b), all visible
points connecting the new point to the existing
span will project to points covering the whole
screen. In this situation, the viewer is (poten-
tially) inside the object. The appropriate action
to take is to set Xmin to XL and to set Xmax
to XR.

In the third case, Figure 6.3(c), all visible
points connecting the new point to the existing
span will project to points to the right of Xmax.
So here we should set Xmax to XR.

The boundaries between cases 1 and 2 are where the rightmost dotted
line passes through the origin, that is, where x/w=Xmax. The boundaries
between cases 2 and 3 are where the leftmost dotted line passes through
the origin, that is, where x/w=Xmin. Transliterating this into C++,
we get

if else(Xmax<x/w) Xmin=XL; // case 1

else if(Xmin<x/w<Xmax){Xmin=XL; Xmax=XR;} // case 2

else if (x/w<Xmin) Xmax=XR; // case 3

With a little fiddling, we can collapse this to actual legal C++.

if(Xmin<x/w) Xmin=XL; // case 1 and 2

if(x/w<Xmax) Xmax=XR; // case 2 and 3
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Putting It Together
Putting It Together

C ombining all four cases, we get a first cut at the algorithm. Note that for
the sLR==0 case, one or the other of the subsidiary if statements

might be true, but not both. For the sLR==(Lout+Rout) case, at least
one of the subsidiary if statements will be true and both might be.

if(sLR==0){
if((x/w)<Xmin) Xmin=x/w;
if((x/w)>Xmax) Xmax=x/w; }

if(sLR==Lout) Xmin=XL;
if(sLR==Rout) Xmax=XR;
if(sLR==Lout+Rout){

if((x/w)>Xmin) Xmin=XL;
if((x/w)<Xmax) Xmax=XR; }

Now we can make the following observation: whenever sLR==0, the
value of w must be positive, so we can calculate ((x/w)<Xmin) as
(x<Xmin*w). But what’s really interesting is that when sLR==Lout+
Rout, the value of w must be negative, so we can also calculate ((x/
w)>Xmin) as (x<Xmin*w). This gives us our next iteration.

if(sLR==0){
if(x<Xmin*w) Xmin=x/w;
if(x>Xmax*w) Xmax=x/w;}

if(sLR==Lout)
if(x>Xmax*w) Xmin=XL;

if(sLR==Rout)
if(x>Xmax*w) Xmax=XR;

if(sLR==Lout+Rout){
if(x<Xmin*w) Xmin=XL;
if(x>Xmax*w) Xmax=XR;}

Finally, we can boil this down even further by first looking at Xmin
and Xmax separately. For Xmin, the calculation is

if(sLR==0)
if(x<Xmin*w) Xmin=x/w; // case a

if(sLR==Lout) Xmin=XL; // case b

if(sLR==Lout+Rout)
if(x<Xmin*w) Xmin=XL; // case c

Figure 6.4 shows the three cases where Xmin changes. Notice that this
only happens when x<Xmin*w and that in both cases b and c Xmin gets
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the same value, XL. This means that we can reduce the complexity of the
code by reversing the order of the tests:

if(x<Xmin*w){
if(sLR&Lout==0) Xmin=x/w; // case a

else Xmin=XL;} // cases b and c

A similar analysis for the Xmax case gives

if(x>Xmax*w){
if(sLR&Rout==0) Xmax=x/w;
else Xmax=XR;}

Initialization of Xmin Xmax
What I have glossed over, however, is the initialization
of the (Xmin,Xmax) screen range we are testing
against. A tempting, but wrong, way to do this is to
initialize Xmin=XR and Xmax=XL, that is, a turned-
inside-out range. We would then expect the first point
to set Xmin and Xmax to a reasonable value, and we
could continue from there. Unfortunately, the first
point might not be in a region that triggers update of
the Xmin or Xmax value (for example, the white area
in Figure 6.4). Figuring out a reasonable initial setting
for Xmin and Xmax leads to enough weird special cases that I’ve resorted
to doing the whole thing as a two-pass process: the first pass scans for visi-
ble hull points and finds the min/max coordinates for them; the second
pass then scans for nonvisible hull points and extends the range to XL and/
or XR as appropriate. Effectively, pass 1 finds points in case a of Figure 6.4,
and pass 2 finds points in cases b and c. The good news is that pass 1 can be
merged with the original loop that calculates L, R, and so on.

You can skip pass 2 if a trivial accept condition occurs. The accumu-
lated (Xmin,Xmax) from pass 1 is correct in this case since all points are
visible. You can also skip pass 2, of course, if a trivial reject occurs. Finally,
you should skip pass 2 if none of the hull points are themselves visible—for
example, if they straddle the screen on both the left and right. In this case,
there may or may not be visible polygons in the final image; this algorithm
won’t be able to figure it out. We must be conservative and return the
whole range (XL,XR) in this case. The net algorithm, in official C++, is

float Xmin=XR, Xmax=XL;
int Ocumulate=0, Acumulate=�0;
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bool anyvis=false;
//////////////////// pass 1 ////////////////////////

for (int i=0; i!=NbrPts; ++i){
ClipPoint& p=P[i];
p.CalcCodes();

Ocumulate = p.sLR;

Acumulate &= p.sLR;

if(p.sLR==0) {
anyvis=true;
if(p.x - Xmin*p.w < 0) Xmin=p.x/p.w;
if(p.x - Xmax*p.w > 0) Xmax=p.x/p.w;}
}

if(Ocumulate==0) { . . . exit}

// Trivial Accept, use(Xmin,Xmax)

if(Acumulate!=0) { . . . exit}

// Trivial Reject

if(anyvis) {

Xmin=XL;
Xmax=XR;

. . . exit } // no visible points, use whole range

/////////////////// pass 2 ////////////////////////

for (i=0; i!=NbrPts; ++i){
ClipPoint& p=P[i];
if((p.sLR&Lout) && (p.x - Xmin*p.w < 0)) Xmin=XL;
if((p.sLR&Rout) && (p.x - Xmax*p.w > 0)) Xmax=XR;}

Caveat
Caveat

W hile this algorithm generates a rectangle that en-
closes the entire screen projection of the object, it

sometimes generates a more conservative region than
necessary. We must look at both x and y to see why.
Suppose we have a tetrahedron whose base is in front
of us but whose apex is behind us, say, to the right and
downward. We can construct the screen region cov-
ered by the whole tetrahedron by projecting the apex
through the eye onto the screen (now it’s to the left
and upward), and drawing edges away from that point
off to infinity, as shown in Figure 6.5.

Now let’s see what happens when we start with
the Xmin and Xmax values from the visible base
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triangle and merge the apex point into the span. The three cases men-
tioned above are shown in Figures 6.6(a) through 6.6(c). In Figure 6.6(a)
we have x/w>Xmin so Xmin is set to XL. This is fine. In Figure 6.6(b) we
have x/w>Xmin so Xmin gets XL, and x/w<Xmax so Xmax gets XR. We
are inside the tetrahedron. This is also fine. The situation in Figure 6.6(c)
is basically symmetrical to that in 6.6(a): x/Xmax so Xmax gets XR. Also
OK. The problem case is shown in Figure 6.6(d).

In Figure 6.6(d), since x/w is between Xmin and Xmax, both extents
are extended to XL and XR. And, in fact, the polygon does stretch to
infinity in the x direction. It is, however, clipped in y before it gets there.
So, the region that is generated by the algorithm is more conservative than
it needs to be. I’m not sure if this is a common situation though. And even
if it is, things might not be so bad. Suppose that a hull point generates an

Caveat 105

Xmin Xmax

(a)

Xmin Xmax

(b)

Xmin Xmax

(c)

Figure 6.6 Algorithm correctly sets Xmin to XL (a), Xmin to XL and Xmax to XR (b), and Xmax to XR (c).
Here’s the catch (d)

Xmin Xmax

(d)



overly conservative estimate using the current al-
gorithm, but that we had a more complicated algo-
rithm that considered the above situation and
makes a better estimate. A later point in the hull ar-
ray could quite possibly come along and expand the
Xmin value back out to XL anyway.

Another Caveat
Another Caveat

A s another example of overconservativeness of
the algorithm, recall that it finds the region cov-

ering the convex hull of the set of vertices. It is pos-
sible that concavities in the actual object might
make for a situation where the covering rectangle
is again too large. See Figure 6.7, which shows

physical x and y in nonperspective space viewing a C-shaped structure.
The algorithm would return the entire screen in this situation since the
eye is inside the convex hull.

Summary
Summary

T he algorithm developed here always returns a screen rectangle that is
guaranteed to completely enclose the image of the 3D object. Some-

times, however, the rectangle is larger than absolutely necessary. I believe
these situations are rare, but I am still doing some experimentation with
real objects and viewing positions to really see if this happens often
enough to worry about.
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Chapter Seven: Fugue for MMX

C H A P T E R S E V E N

Fugue for MMX
M A R C H – A P R I L 1 9 9 7

This exercise in parallel processing assumes that pixel values are encoded
“linearly” as a function of pixel value. That situation is actually fairly
rare. Applying this algorithm to gamma-corrected pixels will only return
an approximation to the correct result. Make sure you look at Chapter 9
to see the tradeoffs involved in this approximation.

O ne of my secret desires has always been to compose a symphony. The
idea of getting about a hundred instruments cranking away playing dif-

ferent things at the same time and having the whole thing sound good
seems totally miraculous to me.

When I was an undergraduate in a hardware architecture course, one
of my instructors compared programming for parallel processors with
writing a symphony. At the time, parallel processors were largely theoreti-
cal machines though, and there were none around for me to play with. I
finally had occasion to actually try some parallel programming as a gradu-
ate student in 1975 at the University of Utah. We had an add-on to our
PDP-11 made by a company called Floating Point Systems that did three
pipelined floating add/multiplies per clock. Unfortunately, it was discon-
nected before I got to debug my program. Then in the summer of 1976
when I worked at NYIT, I was supposed to program a similar unit, but it
never got delivered until just before I returned to Utah. That was the ex-
tent of my symphonic programming efforts until about a year ago, when I
started playing with Pentium instruction pairing. Now MMX adds more
instruments to the orchestra. This column documents some of my early
experiences with programming a simple compositing routine for MMX



and the lessons I’ve learned from it. It’s not exactly a symphony, more like
a fugue.

The Problem
The Problem

T he program deals with pixels comprised of red, green, blue, and alpha
(coverage) components, and with the assumption that the rgb compo-

nents have already been multiplied by their own alpha component. In vec-
tor notation, a pixel is

The alpha component has a value from 0 to 1, so the color components
have values from 0 to Fα.

I will implement the most common image-compositing operation, the
Porter-Duff over operator.1 This takes a foreground pixel F and a back-
ground pixel B and calculates

F over B = F + Α1 − FaΒB
We must perform the same arithmetic (in parallel) on each of the four
components.

8-Bit Arithmetic
8-Bit Arithmetic

W e represent each component of the pixel as an 8-bit fixed-point quan-
tity with the range of 0 to 1 mapped linearly to byte values 0 to 255.

The arithmetic operations needed for the over operator translate as fol-
lows to 8-bit arithmetic.

Addition
No big deal here, just add the byte values. Except . . . there is an often used
trick in rendering that complicates things a bit. Glowing objects can be
represented by pixels with zero coverage (alpha) but nonzero color com-
ponents. If the alpha value of F is zero in the above definition of over, the
operation reduces simply to F+ B; that is, the color components of F (the
glow) are added to the background, but the alpha component doesn’t
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change (since Fa= 0). When we do this, however, it is quite possible to get
a color value greater than 255. About the only reasonable thing to do in
this case is to clamp the resulting summed color values at 255. Doing this
using conventional machine instructions is a real time waster. Fortunately,
the MMX instructions have such a clamped addition (which they call satu-
ration) built in.

Inversion
This is the calculation of (1 − Fa). Translated into 8-bit arithmetic, the
value 1 becomes the byte value 255. Subtracting an 8-bit quantity from
255 is the same as inverting all the bits in the original quantity. We can do
this simply with an exclusive-or. In C notation:

1−Fa = F.a ^ 0xFF

Multiplication
The product of two 8-bit numbers representing values from 0 to 1 should
be another 8-bit number representing the same range. In other words,
since each 8-bit quantity has a built-in scale of 255, we must divide their
16-bit product by 255 to get it to the correct 8-bit range. Including round-
ing into the mix gives, in C syntax:

prod(a,b)

{return (a*b+128)/255;}

In Chapter 19, “Three Wrongs Make a Right,” of Jim Blinn’s Corner:
Dirty Pixels, I discussed ways that you can avoid the explicit division. The
basic idea is to use the fact that 1/255≈ 257/65,536 and do the division by
65,536 with a 16-bit right shift. This gives us

prod(a,b)

{return ((a*b+128)*257)>>16;}

There are some subtleties about why this works. Look at the original arti-
cle for details.

If you are operating on a machine where multiplies aren’t cheap (like a
Classic Pentium with its 10-cycle multiply) you can multiply by 257 (hexa-
decimal 101) with shifts and adds. This also allows the entire operation to
fit into 16-bit arithmetic, a fact we will exploit later. The code is

prod(a,b)

{temp = a*b+128;
return (temp+(temp>>8))>>8;}
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All Together Now
The net calculation to be performed on each component is

temp = F.a^0xFF // calc 1-F.a

C.i=clamp(F.i+prod(temp,B.i))

The MMX Implementation
The MMX Implementation

N ow let’s see how the MMX hardware can do some of this in parallel.
This is by no means a complete description of MMX. You can get more

details from Intel’s Web site.2 You can also get a quick overview from a re-
cent CACM article3 that straight-facedly refers to the process we are doing
here as “image composting [sic].” True, I myself wrote a column called
“Composting” (IEEE CG&A, Nov. 1994) but that was a joke.

I’ll describe here just those MMX instructions we need for this proj-
ect. The MMX engine has eight 64-bit registers named mm0 through
mm7. Instructions that operate on these registers (or on 8-byte mem-
ory quadwords) can treat them as either two independant 32-bit values
(doublewords), four 16-bit values (words), or eight 8-bit values (bytes).
This latter seems ideally suited to our needs. We can store two whole
RGBα pixels in a single MMX register and perform arithmetic on these
two pixels, with all four components, in one MMX instruction. This is de-
spite the outrageous statement in Peleg, et al., that “MMX technology can
process two of these complete pixels simultaneously but wastes the opera-
tions on alpha components.” Pardon me, but arithmetic on alpha is not
wasted.

Addition
There are two addition opcodes we will use. One adds four 16-bit
operands in parallel. We’ll use it in the shift/add calculation. The op-
code is

paddw dest,source add word

The other opcode adds eight 8-bit numbers. We will use this to do the
final addition of two scaled background pixels to two foreground pixels.
There are various versions, but we will use the one that does saturation
clamping as described above. The opcode is

paddusb dest,source add byte saturated
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By the way, the Peleg article comes up with another weird comment
justifying saturation arithmetic for Gouraud shading: “calculations may
start to overflow . . . a dark polygon being shaded toward black may sud-
denly start having white pixels.” Well, it’s my humble opinion that if you
are getting overflow during Gouraud shading, you are doing something
seriously wrong.

Logical Operations
MMX has a typical complement of boolean and shift operations for each
of the three data formats, as well as an 8-byte (quadword) move instruc-
tion. We will need the following:

movq dest,src move quadword
pxor dest,src exclusive-or
psrld dest,count shift doubleword right
psrlw dest,count shift word right

Multiplication
The scaled, rounded multiply operation represented by prod(a,b) is
fundamental to any 8-bit pixel arithmetic. It would be nice if there were an
8-byte parallel multiply that did this directly. No such luck. The only mul-
tiply available in MMX operates on four 16-bit value pairs in parallel giv-
ing four 16-bit results. Since the result of each 16-bit multiply is a 32-bit
value, there are actually two opcodes. One calculates the upper half of the
result, and one calculates the lower half:

pmulhw dest,src multiply word, keep high
pmullw dest,src multiply word, keep low

We must now build the prod(a,b) operation out of these existing
instructions. Since the available multiply takes 16-bit inputs, we can op-
erate on only one pixel at a time (unpacked from 8-bit to 16-bit
components). I have found three ways to do this, but only two of them
work.

The first, shortest, neatest—but nonworking—way uses the keep-high
version of the multiply to do the division by 65,536:

ROUND=0x0080 0080 0080 0080
N257 =0x0101 0101 0101 0101
pmullw mm3,mm1 four products
paddw  mm3,ROUND add 128
pmulhw mm3,N257 times 1/255
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Unfortunately, this does not work because MMX only provides a signed
multiply. Since pixel values are only positive, what we want is an unsigned
multiply. This is a shame since this would be a very often used idiom.

The second technique simulates an unsigned multiply by subtracting a
magic constant (0x8000) before the multiply and adding 257 times the
constant (0x808000) after the multiply. But this latter value needs both the
high and low result, which we don’t get with one instruction. If we multi-
ply by 257*2, the second constant becomes 0x1010000. Just keep the high
part and then shift right. We can also merge adding the initial 0x8000 with
the rounding constant. Confusing? Yes. But it works. The net result is the
five instructions:

x8080=0x8080 8080 8080 8080
x0202=0x0202 0202 0202 0202
pmullw mm3,mm1 four products
paddw  mm3,x8080 add bias
pmulhw mm3,x0202 times 514
paddw  mm3,N257 plus bias*514
psrlw  mm3,1 over 2

I chose not to use this technique, however, since it makes the instruction
pairing (to be done later) a lot harder.

The actual technique I used in the final code is the shift-and-add
method from my earlier IEEE column, which conveniently can be done
using 16-bit arithmetic. In MMX code:

ROUND=0x0080 0080 0080 0080
pmullw mm3,mm1 product
paddw  mm3,ROUND product+128=Pr
movq   mm5,mm3 Pr
psrlw  mm5,8 Pr>>8
paddw  mm5,mm3 Pr+(Pr>>8)
psrlw  mm5,8 (Pr+(Pr>>8))>>8

Packing/Unpacking
Finally, there are a whole bunch of instructions for converting back and
forth between byte, word, and doubleword formats. Instead of a detailed
description of exactly what each of these does, I’ll refer you to the com-
ments in the code in Listing 7.1 for a sort of diagrammatic description. I’ll
give a brief overview here.

To convert four of the eight 8-bit values in a register to four 16-bit val-
ues, you can use

punpcklbw unpack low bytes to word
punpckhbw unpack high bytes to word
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To go the other way, converting two registers each containing four 16-
bit values to one register containing eight 8-bit values, you use

packuswb pack words to byte

Finally, we’ll use a trick with the word-unpacking instructions. If the
source and destination operands are the same, this replicates the alpha
component through the register. The opcodes are

punpcklwd unpack low words to doubleword
punpckhwd unpack high words to doubleword

The Base Code
The Base Code

L isting 7.1 shows my basic implementation of the over operation between
two buffers of pixels. Each iteration through the loop processes two pix-

els. For later reference, I have numbered each loop instruction using a
notation that shows the destination register, a dot, and an instruction se-
quence number.
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Listing 7.1 Straightforward code

// Array Over

// operates on pairs of pixels at once

// each pair stored in a quadword

// (C,D) = (G,F) over (A,B)

//

xor ebx,ebx // offset for the three pointers

mov edx,GF // edx -> destination

mov edi,GF // edi -> Foreground source

mov esi,AB // esi -> Background source

mov ecx,cPxls // ecx = loop count

static __int64 ZERO =0x0000 0000 0000 0000;
static __int64 ROUND=0x0080 0080 0080 0080;
static __int64 MASK =0x0000 00FF 0000 00FF;

loopb:

movq mm1,[edi+ebx] // 1.01 mm1= Ga Gb Gg Gr Fa Fb Fg Fr

psrld mm1, 24 // 1.02 mm1= 0000 00Ga 0000 00Fa

pxor mm1,MASK // 1.03 mm1= 0000 1-Ga 0000 1-Fa

movq mm2,mm1 // 2.04 mm2= 0000 1-Ga 0000 1-Fa

punpcklwd mm1,mm1 // 1.05 mm1= 0000 0000 1-Fa 1-Fa



Squeezing Out the Air
Squeezing Out the Air

N ow for some real fun. In addition to the data parallelism of the MMX
instructions, the Pentium CPU can execute two of these instructions si-

multaneously if certain constraints are met. Some of the necessary condi-
tions for two instructions to be paired are

■ The second does not depend on the results of the first.
■ Only one shift instruction is allowed (this includes pack and unpack

instructions).
■ Only one memory reference is allowed, and it must be the first of the

pair.
■ Only one multiply is allowed.
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punpckhwd mm2,mm2 // 2.05 mm2= 0000 0000 1-Ga 1-Ga

punpcklwd mm1,mm1 // 1.06 mm1= 1-Fa 1-Fa 1-Fa 1-Fa

punpcklwd mm2,mm2 // 2.06 mm2= 1-Ga 1-Ga 1-Ga 1-Ga

movq mm3,[esi+ebx]   // 3.04 mm3= Aa Ab Ag Ar Ba Bb Bg Br

movq mm4,mm3 // 4.05 mm4= Aa Ab Ag Ar Ba Bb Bg Br

punpcklbw mm3,ZERO // 3.06 mm3= 00Ba  00Bb  00Bg  00Br

punpckhbw mm4,ZERO // 4.06 mm4= 00Aa  00Ab  00Ag  00Ar

pmullw mm3,mm1 // 3.07 mm3= (1-Fa)*B

pmullw mm4,mm2 // 4.07 mm4= (1-Ga)*A

paddw mm3,ROUND // 3.08 mm3= (1-Fa)*B+128=FBr
paddw mm4,ROUND // 4.08 mm4= (1-Ga)*A+128=GAr
movq  mm5,mm3 // 5.09 mm5= FBr

movq  mm6,mm4 // 6.09 mm6= GAr

psrlw mm5,8 // 5.10 mm5= FBr>>8
psrlw mm6,8 // 6.10 mm6= GAr>>8
paddw mm5,mm3 // 5.11 mm5= FBr+(FBr>>8)
paddw mm6,mm4 // 6.11 mm6= GAr+(GAr>>8)
psrlw mm5,8 // 5.12 mm5= (FBr+(FBr>>8)>>8)= 00Sa 00Sb 00Sg 00Sr

psrlw mm6,8 // 6.12 mm6= (Gar+(GAr>>8)>>8)= 00Ta 00Tb 00Tg 00Tr

packuswb mm5,mm6 // 5.13 mm5= Sa Sb Sg Sr Ta Tb Tg Tr

paddusb mm5,[edi+ebx]// 5.14 mm5= Ca Cb Cg Cr Da Db Dg Dr

movq [edx+ebx],mm5   // 5.15 store
add ebx,8 //      increment index

dec ecx //      decrement loop counter

jg  loopb //      loop



Each instruction, paired or not, takes only one cycle unless some condition
causes the pipeline to stall. Criteria for avoiding pipeline stalls include

■ The result of a multiply cannot be referenced until the third clock
cycle after the instruction.

■ Storing a register to memory can only happen on the second clock
cycle after it is calculated.
Keeping track of all these conditions is a real pain, but fortunately

Intel has a wonderful tool called VTune4 that can examine your code and
inform you of pairing and stalling problems.

The next stage of the game, then, is to shuffle the order of the instruc-
tions to achieve maximum pairing and remove stalls. I also had some help
from David Shade of Intel in this exercise. Simply passing the raw code
through VTune is pretty discouraging. Part of the problem is that there
are 12 pack/unpack/shift instructions in the loop that won’t pair. Simply
exchanging instructions that do not have data dependencies gives only
limited improvement. We can get a real boost, however, by looking at the
instruction sequence according to Table 7.1. This table correlates with the
instruction numbering in Listing 7.1. Each column represents the con-
tents of one register, and each row is one (potentially concurrent) step of
the algorithm. The shaded regions indicate steps where the register con-
tents are valid. The notation (*) stands for the previous contents of a
register.

The unusually interesting shape of this table suggests that we can
make the algorithm into a fugue. Musically, a fugue is like a round, as in
“Row, row, row your boat.” Algorithmically, we are going to make the loop
operate on registers mm3 through mm6 for the current iteration while set-
ting up mm1 and mm2 for the next iteration. Think of slicing Table 7.1
through the middle and overlaying the top half on the bottom half. The
way I did this in practice was as follows: Take some instructions from the
top of the loop and move them to the bottom, adjusted to index the next
pixel (as well as putting another copy in an initialization prolog before the
loop begins). Then percolate these bottom-of-loop instructions back ear-
lier in the loop to fill in the holes left by unpairable or stalling instructions
from the current iteration cycle. Keep passing this through VTune and
moving more instructions until you fill in all the pipeline gaps.

Listing 7.2 is my best reshuffling of the 30 instructions to achieve
maximum pairing and minimal stalls. Instructions that refer to the next
loop have a + flag in the comment field. The pairing is complete; every
successive pair of instructions executes in one cycle. The only slight snag is
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4 http://developer.intel.com/software/products/vtune/index.htm



that instruction 5.15 has a one-cycle stall since it is storing a value to mem-
ory that was calculated on the previous cycle. More work might eliminate
this but, as it stands, the loop theoretically takes 16 cycles, or 8 cycles per
pixel. My best implementation using conventional instructions (albeit in
optimized C) takes 37 cycles/pixel on a Pentium, and 19 on a Pentium Pro.

On a 200 MHz machine, MMX could theoretically composite 25 mil-
lion pixels per second. That’s the equivalent of compositing two full
1024×1024 screens 24 times per second. This sounds pretty good. But . . .
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Table 7.1 Register history during algorithm

mm1 mm2 mm3 mm4 mm5 mm6

01 (G,F)

02 Ga    Fa

03 1-Ga  1-Fa

04 copy → 1-Ga  1-Fa (A,B)

05 0,0,1-Fa,1-Fa 0,0,1-Ga,1-Ga copy → (A,B)

06 1-Fa 4 times 1-Ga 4 times Ba,Br,Bg,Bb Aa,Ar,Ab,Ag

07 (1-Fa)*B (1-Ga)*A

08 (*)+128=FBr (*)+128=GAr

09 copy → copy → FBr GAr

10 FBr>>8 GAr>>8

11 FBr+(*) GAr+(*)

12 (*)>>8=S (*)>>8=T

13 (S,T)

14 (C,D)

15 store

Listing 7.2 Final code

#include “pixel32.h”

/////////////////////////////////////////////////////////

// Array Over

// operates on pairs of pixels at once

// each pair stored in a quadword

// (C,D) = (G,F) over (A,B)

////////////////////////////////////////////////////////

void OverArrayMMX(Pixel32 F[], Pixel32 B[], int cPxls)

{

static __int64 MASK =0x000000FF000000FF;
static __int64 ROUND=0x0080008000800080;
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__asm push ebx

__asm push ecx

__asm push edx

__asm xor ebx, ebx // offset for the three pointers

__asm mov edx,F // edx -> destination

__asm mov edi,F // edi -> Foreground source

__asm mov esi,B // esi -> Background source

__asm mov ecx,cPxls // ecx = loop count

//  prolog: prime the pump

//

__asm pxor mm0,mm0 // mm0 = 0000 0000 0000 0000

__asm movq mm7,MASK // mm7 = 000000FF  000000FF

__asm movq mm1,[edi+ebx] // 1.01 mm1= Ga Gb Gg Gr Fa Fb Fg Fr

__asm psrld mm1, 24 // 1.02 mm1= 0000 00Ga 0000 00Fa

__asm pxor mm1,MASK // 1.03 mm1= 0000 1-Ga 0000 1-Fa

__asm movq mm2,mm1 // 2.04 mm2= 0000 1-Ga 0000 1-Fa

__asm punpcklwd mm1,mm1 // 1.05 mm1= 0000 0000 1-Fa 1-Fa

__asm punpckhwd mm2,mm2 // 2.05 mm2= 0000 0000 1-Ga 1-Ga

__asm punpcklwd mm1,mm1 // 1.06 mm1= 1-Fa 1-Fa 1-Fa 1-Fa

__asm punpcklwd mm2,mm2 // 2.06 mm2= 1-Ga 1-Ga 1-Ga 1-Ga

__asm movq mm3,[esi+ebx] // 3.04 mm3= Aa Ab Ag Ar Ba Bb Bg Br

__asm movq mm4,mm3 // 4.05 mm4= Aa Ab Ag Ar Ba Bb Bg Br

__asm punpcklbw mm3,mm0 // 3.06 mm3= 00Ba  00Bb  00Bg  00Br

__asm shr ecx, 1 // divide loop counter by 2; pixels are processed in pairs

__asm dec ecx //  do one less loop to correct for prolog/postlog

__asm jz skip //     if original loop count=2

loopb:

__asm punpckhbw mm4,mm0 // 4.06 mm4= 00Aa  00Ab  00Ag  00Ar

__asm pmullw mm3,mm1 // 3.07 mm3= (1-Fa)*B

__asm movq mm1,[edi+ebx+8] //+1.01 mm1= Ga Gb Gg Gr Fa Fb Fg Fr

__asm pmullw mm4,mm2 // 4.07 mm4= (1-Ga)*A

__asm psrld mm1, 24 //+1.02 mm1= 0000   Ga 0000  Fa

__asm add ebx,8 //      increment offset
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__asm paddw mm3,ROUND // 3.08 mm3= prod+128=FBr
__asm pxor mm1,mm7 //+1.03 mm1= 0000 1-Ga 0000 1-Fa

__asm paddw mm4,ROUND // 4.08 mm4= prod+128=Gar
__asm movq mm2,mm1 //+2.04 mm2= 0000 1-Ga 0000 1-Fa

__asm movq mm5,mm3 // 5.09 mm5= FBr

__asm punpcklwd mm1,mm1 //+1.05 mm1= 0000 0000 1-Fa 1-Fa

__asm movq mm6,mm4 // 6.09 mm6= GAr

__asm punpckhwd mm2,mm2 //+2.05 mm2= 0000 0000 1-Ga 1-Ga

__asm psrlw mm5,8 // 5.10 mm5= FBr>>8
__asm dec ecx //      decrement loop counter

__asm psrlw mm6,8 // 6.10 mm6= GAr>>8
__asm paddw mm5,mm3 // 5.11 mm5= FBr+(FBr>>8)

__asm paddw mm6,mm4 // 6.11 mm6= GAr+(GAr>>8)
__asm psrlw mm5,8 // 5.12 mm5= (FBr+(FBr>>8)>>8)= 00Sa 00Sb 00Sg 00Sr

__asm movq mm3,[esi+ebx] //+3.04 mm3= Aa Ab Ag Ar Ba Bb Bg Br

__asm psrlw mm6,8 // 6.12 mm6= (Gar+(GAr>>8)>>8)= 00Ta 00Tb 00Tg 00Tr

__asm movq mm4,mm3 //+4.05 mm4= Aa Ab Ag Ar Ba Bb Bg Br

__asm packuswb mm5,mm6 // 5.13 mm5= Ta Tb Tg Tr Sa Sb Sg Sr

__asm paddusb mm5,[edi+ebx-8]// 5.14 mm5= Ca Cb Cg Cr Da Db Dg Dr

__asm punpcklwd mm1,mm1 //+1.06 mm1= 1-Fa  1-Fa  1-Fa  1-Fa

__asm movq [edx+ebx-8],mm5 // 5.15 store

__asm punpcklwd mm2,mm2 //+2.06 mm2= 1-Ga  1-Ga  1-Ga  1-Ga

__asm punpcklbw mm3,mm0 //+3.06 mm3= 00Ba  00Bb  00Bg  00Br

__asm jg  loopb //      loop

//

// loop postlog, drain the pump

//

skip:

__asm punpckhbw mm4,mm0 // 4.06 mm4= 00Aa  00Ab  00Ag  00Ar

__asm pmullw mm3,mm1 // 3.07 mm3= (1-Fa)*B

__asm pmullw mm4,mm2 // 4.07 mm4= (1-Ga)*A



Not So Fast
Not So Fast

T he MMX loop doesn’t really go that fast. The fly in the ointment is
memory bandwidth. And tricks that allow us to ease this bottleneck are

hard to do on MMX.

Memory Bandwidth
The acronym RAM is supposed to mean random access memory. It
doesn’t anymore. Random access means that it should take the same
amount of time to access any byte of memory. With modern memory hier-
archies consisting of two-level caches and the like, memory access time
strongly depends on whether the desired memory is already in the cache,
and this depends on the addressing pattern of your accesses.

For MMX instructions, if the referenced memory is in the cache, the
instruction takes no longer than if it was in a register. That’s why I was able
to access the ROUND constant with no extra delay. Memory accesses can in-
troduce stalls for other reasons though. That’s why I put the constants
ZERO and MASK into registers mm0 and mm7.
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__asm paddw mm3,ROUND // 3.08 mm3= prod+128=FBr
__asm paddw mm4,ROUND // 4.08 mm4= prod+128=Gar
__asm movq  mm5,mm3 // 5.09 mm5= FBr

__asm movq  mm6,mm4 // 6.09 mm6= GAr

__asm psrlw mm5,8 // 5.10 mm5= FBr>>8
__asm psrlw mm6,8 // 6.10 mm6= GAr>>8
__asm paddw mm5,mm3 // 5.11 mm5= FBr+(FBr>>8)
__asm paddw mm6,mm4 // 6.11 mm6= GAr+(GAr>>8)
__asm psrlw mm5,8 // 5.12 mm5= (FBr+(FBr>>8)>>8)= 00Sa 00Sb 00Sg 00Sr

__asm psrlw mm6,8 // 6.12 mm6= (Gar+(GAr>>8)>>8)= 00Ta 00Tb 00Tg 00Tr

__asm packuswb mm5,mm6 // 5.13 mm5= Sa Sb Sg Sr Ta Tb Tg Tr

__asm paddusb mm5,[edi+ebx] // 5.14 mm5= Ca Cb Cg Cr Da Db Dg Dr

__asm movq [edx+ebx],mm5 // 5.15 store

//

// really done now

//

__asm EMMS

__asm pop edx

__asm pop ecx

__asm pop ebx

}



If a memory location is not in cache, however, the CPU must wait for
it to be brought in from main memory. In our case, this is the likely situa-
tion since frame buffer–sized blocks of memory won’t fit into the cache.
The bad news is that a memory access can take upwards of 100 cycles. You
do, however, retrieve 32 bytes per memory access, so the 100-cycle delay
costs 12.5 cycles per pixel access. If the destination buffer is the same as
one of the two source buffers, there are only two pixel accesses per loop, so
the memory access overhead could be as much as 25 cycles per pixel. It’s
not quite that bad since there is some overlap between memory retrieval
and CPU execution. Some rough timings I’ve done with the Listing 7.2
code indicate that the worst-case memory access overhead adds more like
10 cycles per pixel to the CPU cycle count. On large buffers, this narrows
the gap between MMX and conventional processing. Per pixel, MMX
takes about 20 cycles, conventional Pentium about 47 cycles, and Pentium
Pro about 29. These numbers are only approximate though since my tim-
ing tests currently aren’t very rigorous.

Testing Special Cases
There is another way to speed up this calculation that I described in Chap-
ter 16, “Compositing—Theory” of Jim Blinn’s Corner: Dirty Pixels. It’s
based on the observation that, for a typical image being composited into a
frame buffer, most of the pixels have an alpha of zero (the outer transpar-
ent region) or one (the inside of the object). Fractional values typically
only occur around the antialiased edges of the object. It’s therefore a big
win mathematically to test for 0 and 1 and skip the arithmetic for these
special cases. It’s an even bigger win given our problems with cache coher-
ence since parts of the background buffer sometimes don’t need to be
touched in the special cases.

There are various variants of this economization, depending on
whether you are compositing front to back or back to front, and depend-
ing on whether you allow glowing pixels. The version I tested was back to
front with no glows. The algorithm is

if     (F.a==1) B=F;
else if(F.a!=0) B=F+(1-F.a)*B;
//else leave B alone

I coded this with non-MMX instructions and applied it to a buffer
with mostly 1s and 0s for F.a. The result was a bit faster (an average of 15
cycles per pixel) than blindly applying the MMX code to the whole buffer
(20 cycles). If the foreground object had a lot of transparency, though, the
MMX version would win.
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So how about the best of both worlds? Doing special-case testing with
parallelized MMX instructions is a nuisance or downright impossible. The
ultimate algorithm would preprocess the foreground object into spans
of F.a=0, F.a=1, and F.a=fraction and apply the appropriate code to
each span.

Observations
Observations

M MX certainly helps, but only in very regular algorithms. Any sort of
special-case testing dilutes its usefulness. Small, easily programmed

loops provide little opportunity for instruction pairing and require clever
programming.

Speeding up one part of a calculation just makes something else into
the bottleneck. Using conventional Pentium instructions, the bottleneck
was the 10-cycle multiply. With MMX and four multiplies in one cycle, it’s
memory bandwidth. If we can do more to the pixels once we’ve hauled
them out of memory, we will win.

Too many of the instructions in the code are data format conversions;
it spends most of its time packing and unpacking data. This is not unique
to MMX code; conventional pixel processing code has a similar problem.
This is an indication that the basic opcodes of the machine are not well
matched to the problem.

I don’t think we’ll see compilers automatically generating MMX code
any time soon, so there is still a need for human assembly language
crafters. This makes me happy.
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Chapter Eight: Floating-Point Tricks

C H A P T E R E I G H T

Floating-Point Tricks
J U L Y – A U G U S T 1 9 9 7

ÒO h, you work with computers? Gee, I can’t even balance my checking
account!”

Don’t you just love it when some friend comes up with this one? So
much of what we do with computers has nothing to do with arithmetic.
Word processing, painting, stuff that even mathphobes can appreciate. But
in the rendering game there’s no substitute for nice juicy numbers. And
what kinds of numbers are they?

There are basically two popular numeric types inside a computer,
floating point and fixed point (which I have sometimes referred to as
scaled integers). In my career of number crunching, I’ve oscillated back
and forth between favoring each of them. My first available computer (a
PDP-9) didn’t have floating-point hardware, so I was motivated to use
scaled integer representations. Then I played with an IBM 360 and floats
were practical. When I got ahold of a PDP-11, floats were available
but slow—back to integers. Then on to a VAX and floating point. When
I moved to early PCs, it was back to scaled integers. Now that Pentia can
do floating point fairly fast, it’s float time. Finally, with MMX instruc-
tions, integers have come back into the fore. Gee, I wonder what will hap-
pen next?

Well, I recently learned about some interesting properties of the
IEEE floating-point representation that sort of mixes the two. In
order to see (and believe) how this works, I must first review this
representation.



IEEE Floating-Point Representation
IEEE Floating-Point Representation

T he IEEE floating-point representation stores numbers in what amounts
to scientific notation. Conventional scientific notation would write the

number 3,485,000 in the form 3.485×106. This notation is not unique; we
could, for example, use any of the following:

3,485,500 = 3.485 × 106 = 0.3485 × 107 = etc.

It is typical, however, to standardize on the version with one decimal digit
to the left of the decimal point.

The IEEE floating-point version of scientific notation represents
numbers similarly but with powers of two instead of ten. We would, for
example, write

1810 = 1.0012 × 24

3.7510 = 1.1112 × 21

again standardizing on the version with one binary digit (bit) to the left of
the binary point.

Next, being parsimonious about bits, the IEEE decided that it didn’t
necessarily need to store the 1 that is just to the left of the binary point
since it’s always 1. Only the fractional bits are stored in the low 23 bits of
the floating-point value. The exponent of 2 is stored in the next 8 bits but
offset with a bias of 12710. (This allows the exponent field to be treated as
an unsigned integer but still be able to represent fractions less than one.)
Finally, the sign bit takes up the remaining 1 bit. Some examples of this
representation appear in Table 8.1.

Opening the Box
Opening the Box

M ost programmers don’t need to know about any of this detail. They
can think of floating-point values as black boxes—subjects of mystery

not to be tampered with by mere mortals. But we are not mere mortals, are
we? Let’s dive in.

The Sign Bit
In Chapter 13, “Line Clipping,” of Jim Blinn’s Corner: A Trip Down the
Graphics Pipeline, I opened the box for the first time. The operation in
question was the creation of a bit mask that specifies which clipping planes
need to be processed. This decision comes from calculating a floating-
point value for each vertex and for each clipping plane. If the value is posi-
tive, the vertex is on the inside of the plane; if it’s negative, it’s on the
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outside of the plane. A completely legal, nontricky way to generate the
mask word would be

mask=0;
for (i=0,m=1; i<6; ++i,m=m<<1)

{if val[i]<0 mask=m;}

This requires six floating-point tests, things that were unpleasantly
slow on 1991 vintage PCs. Feeling brave, I constructed the six-bit mask by
performing logical shifts on the sign bit of the floating-point words. I
won’t go into the details of the code, but I’ll just scare you by saying that it
required assembly language at that time. The important thing, though, is
that no floating-point operations were required—just logical shifting and
masking of the floating-point values as bit patterns. This sort of thing
might seem exceedingly machine dependent, but let’s face it, the IEEE
isn’t going to change their floating-point format any time soon. The only
trap here is if a value happens to be minus zero (which has the perfectly
reasonable representation 0x80000000) that should actually be treated as a
positive number. I did get this to happen once due to some unfortuitous
forward-differencing calculations. But on the whole the speed-up was
worth the risk.

The Rest of the Bits
Now let’s get to the interesting part, tricky things we can do with the rest
of the floating-point word. I am indebted to Steve Gabriel and Gideon
Yuval here at MS Research for first pointing out to me the following amus-
ing fact:

If you only deal with positive numbers, the bit pattern of a floating-point
number, interpreted as an integer, gives a piecewise linear approximation
to the logarithm function.

Opening the Box 125

Table 8.1 Examples of IEEE floating point-representation

Float Sign Exponent Fraction

Combined
hexidecimal

value

.625 0 01111110 (1).010000000000000000000000 0x3F200000

1.0 0 01111111 (1).000000000000000000000000 0x3F800000

2.0 0 10000000 (1).000000000000000000000000 0x40000000

4.0 0 10000001 (1).000000000000000000000000 0x40800000

−13.75 1 10000010 (1).101110000000000000000000 0xC15C0000



To show why this is true, I’ll use a rather abbreviated version of the format
with 2 bits for exponent and 2 bits for mantissa. See Table 8.2.

The first thing to notice about this is the fact that the bit pattern, in-
terpreted as an integer, is a monotonic function of the floating-point value
it represents. This means, for example, that when comparing two positive
floating-point numbers, as floating-point numbers, you would get the
same answer as comparing the two bit patterns as integers. In some situa-
tions, this could be handy, as for example, when floating-point compari-
sons are more expensive than integer comparisons (still the case on many
machines), or when you have an integer parallel processor as with MMX.
Remember that this only works when the numbers are positive. An article
by Walt Donovan and Tim Van Hook in Graphics Gems IV explores doing
this with negative numbers, too.1

126 Chapter Eight: Floating-Point Tricks

Table 8.2 A 4-bit floating point number

Complete
bit pattern

Exponent Mantissa Floating-value
representedBit field Interpretation Bit field Interpretation

0000 00 2-1 00 1.002 = 1.0010 1.00 × 2-1 = 0.500

0001 01 1.012 = 1.2510 1.25 × 2-1 = 0.625

0010 10 1.102 = 1.5010 1.50 × 2-1 = 0.750

0011 11 1.112 = 1.7510 1.75 × 2-1 = 0.875

0100 01 20 00 1.002 = 1.0010 1.00 × 20 = 1.000

0101 01 1.012 = 1.2510 1.25 × 20 = 1.250

0110 10 1.102 = 1.5010 1.50 × 20 = 1.500

0111 11 1.112 = 1.7510 1.75 × 20 = 1.750

1000 10 21 00 1.002 = 1.0010 1.00 × 21 = 2.000

1001 01 1.012 = 1.2510 1.25 × 21 = 2.500

1010 10 1.102 = 1.5010 1.50 × 21 = 3.000

1011 11 1.112 = 1.7510 1.75 × 21 = 3.500

1100 11 22 00 1.002 = 1.0010 1.00 × 22 = 4.000

1101 01 1.012 = 1.2510 1.25 × 22 = 5.000

1110 10 1.102 = 1.5010 1.50 × 22 = 6.000

1111 11 1.112 = 1.7510 1.75 × 22 = 7.000

1 Donovan, W., and Van Hook, T., “Direct Outcode Calculation for Faster Clip Testing,” Graphics Gems IV,
P. Heckbert, ed., AP Professional, Cambridge, Mass., 1994, pp. 125–131.



The next question to ask is, what
is the monotonic function? Figure
8.1 plots our abbreviated numbers.
Does this look familiar? It is, as I
said, a piecewise linear approxima-
tion to a logarithm function. Each
linear span connects two powers of
two. By properly switching interpre-
tations of a bit pattern between inte-
ger and float, we can come up with
cheap but approximate exponential
and logarithm functions.

Let’s turn this into code. First,
though, we will need to be able to
swindle the compiler into changing
the interpretation of a bit pattern be-
tween integer and float without ac-
tually doing a conversion. Two C
functions that will work are

inline long int AsInteger(float   f) {return *(int  *)&f;}

inline float    AsFloat  (long int i) {return *(float*)&i;}

Logarithm
Now let’s do the logarithm function, in particular, the base 2 logarithm.
This is essentially just float(AsInteger(x)), but there is a scale and
offset we have to include to get it right. Referring to Table 8.3, we can see
that if we subtract the bit pattern for 1.0 (as an integer), we will get the
logarithm scaled up by 0x00800000. We simply need to divide by this
quantity (as a floating value) and we’re done. The code is

const long int OneAsInteger = AsInteger(1.0f);

const float     ScaleUp = float(0x00800000);

const float     ScaleDwn = 1./ScaleUp;

float Alog2(float x){

return float(AsInteger(x)-OneAsInteger) *ScaleDwn;}
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Exponential (Power)
To get the exponential function—or, in this case, the function y = 2x—we
basically reverse the above calculation.

float Apow2(float x){

return AsFloat(int(x*ScaleUp)+OneAsInteger);}

Note that this function works properly even for negative values of x.
Since the two factors ScaleUp and ScaleDwn are powers of two, it

is possible to perform their multiplication by simply adding or subtracting
from the exponent field of the floating-point number (again, in integer
mode). I don’t do this here because a typical application will actually re-
quire powers or logarithms to some base other than 2. The conversion for-
mulas are

The conversion factor, , which is not a nice power of two, can be
merged with the ScaleUp and ScaleDwn multiplication to generate
functions for any desired base with the same number of operations as
above.

Fog
One typical graphics application where the exponential function approxi-
mation is likely to be accurate enough is fog simulation. In this case, the
transparency of fog is given by

where the fog density is d and the distance from the eye is z. If the fog den-
sity is constant, this gives another case where the multiplication by the fac-
tor (−dlog2e) can be merged with ScaleUp.
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Table 8.3 Bit patterns for base 2 logarithm

Float Bit pattern log2 of float Bit pattern − 0x3F800000

1.0 0x3F800000 0.0 0x00000000

2.0 0x40000000 1.0 0x00800000

4.0 0x40800000 2.0 0x01000000



Other Functions
Other Functions

N ow we can go nuts with approximations to many other functions that
are popular in computer graphics. One general function that we like a

lot is a simple power

Express this with our approximation code and you get

float temp = (AsInteger(x)-OneAsInteger)*ScaleDwn;

float power = AsFloat(int(p*temp*ScaleUp)+OneAsInteger);

The multiplications by ScaleUp and ScaleDwn cancel, and we can fold
this together into

power = AsFloat( int(p*(AsInteger(x)-OneAsInteger))

+ OneAsInteger );

or

power = AsFloat(int(p*AsInteger(x)+(1-p)*OneAsInteger));

One could use this to evaluate the “cosine power” for Phong shading, but I
think “cosine power” is such a bad way of modeling surface smoothness
that I won’t mention it further. Instead, let’s see how this looks with several
specific, but popular, values of p.

Square Root
Here p = 1/2. This generates the code

sqrt = AsFloat((AsInteger(x)+OneAsInteger)/2);

In practice, however, we must guard against integer overflow in the above
addition, so I divide by 2 (with a shift) before adding. Final code is

float Asqrt(float x){

int i= (AsInteger(x)>>1)+(OneAsInteger>>1);
return AsFloat(i);}

This is actually pretty weird. We are shifting the floating-point parameter,
(exponent and fraction) right one bit. The low-order bit of the exponent
shifts into the high-order bit of the fraction. But it works.

You can pull the expression (OneAsInteger>>1) out into a precal-
culated constant if your compiler is not smart enough to do it for you. I
will not do that explicitly here or in the following code.
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Inverse
This is useful in doing perspective. In this case, p = −1. The code is

float Ainverse(float x){

int i = -AsInteger(x) + 2*OneAsInteger;

return AsFloat(i);}

This function also works properly for negative values of x.

Inverse Square Root
This is useful to normalize vectors. Here p = −1/2. The raw code is

Turning this into shifts gives us the code

float AinverseSqrt(float f){

int i = (OneAsInteger +(OneAsInteger>>1)) -
(AsInteger(f)>>1);

return AsFloat(i);}

You can polish this a bit by turning the 3/2*OneAsInteger into a
single compile-time constant, if the compiler doesn’t do that for you
already.

Errors and Refinements
Errors and Refinements

W ell, how close are these approximations? Figure 8.2 gives a series
of graphs of the relative error (correct minus approximation di-

vided by correct). Each error curve will repeat itself at different horizontal
scales to the right and left. We can see that worst-case relative error is
about 10%.

One nice thing about these approximations is that they make good
seeds for iterative refinement techniques. The most common such tech-
nique is Newton-Raphson iteration. Simply building one step of such an
iteration into the function can improve the results considerably. Here are
better versions of our three power functions using such a scheme.

float Binverse(float x){

float y = Ainverse(x);

return y*(2-x*y);}
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float Bsqrt(float x){

float y = Asqrt(x);

return (y*y+x)/(2*y);}

float BInverseSqrt(float x){

float y = AInverseSqrt(x);

return y*(1.5-.5*x*y*y);}

One might be tempted to replace the di-
vision in the square root refinement with
a call to Ainverse. When I tried this,
however, the error got worse than that
from the original Asqrt function. The
relative errors of these three improved
functions are plotted as the lower curves
in Figure 8.2.

I’ll tantalize you a bit by mentioning
that you can double the accuracy of the
inverse square root function by modify-
ing the correction calculation to

return y*(1.47-.47*x*y*y);

That is what I actually showed in Figure
8.2. The explanation will have to wait for
a later column though.

How about iterative improvement
of the logarithm and exponential func-
tions? Newton iteration effectively re-
quires evaluation of the inverse of the
function we are solving for, so it’s really
no help here. The following trick for the
exponential function is due to Gideon
Yuval. First, look at the relative errors
in Apow2 plotted in the upper curve of
Figure 8.3. The maximum errors are at
points halfway between integral parame-
ter values. Near these points we could
use the mathematical identity

2x = 2x+1/2×2−1/2

That is, we could shift our evaluation
to a region where the function is more
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accurate by adding one half to the parameter value and multiplying the re-
sult by a constant. But we don’t really want to have to test parameter
ranges and switch functions. A better plan is to calculate a sort of geomet-
ric mean between the two functions. This effectively uses the identity

Then approximate the right side with

and adjust the scale factor c to spread the error fairly uniformly across the x
parameter range. Some numerical tests show that a good value is about
0.657. This gives the code

float Bpow2(float x) {

return Apow2(x/2)*Apow2(x/2+.5)*.657;}

Of course, the halving of the parameter values can be absorbed into the
ScaleUp constant within Apow2. The resultant relative error curve ap-
pears as the bottom curve in Figure 8.3.

A similar gimmick leads us to the improved version of the logarithm
function:

float Blog(float x) {

return .5*(Alog(x)+Alog(x*.6666))+.344;}

Conclusion
Conclusion

F or some quick-and-dirty approximations,
it pays to be brave and open the magic

floating-point box. There are also many
other possible refinement techniques I
haven’t gone into here. You could, for ex-
ample, try table lookups or other simple
functions applied to the high few bits of the
fraction. You just have to make sure your
refined approximate solution doesn’t wind
up being slower than the original correct
solution. I’m still interested in what other
goodies can be extracted from this trick.
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Chapter Nine: A Ghost in a Snowstorm

C H A P T E R N I N E

A Ghost in a Snowstorm
J A N U A R Y – F E B R U A R Y 1 9 9 8

T here’s a storm cloud growing on the horizon of the digital convergence
between computer graphics and television/graphic arts. Computer

graphics and image processing assume that pixel values are linearly related
to light intensity. A typical video or paint image, however, encodes inten-
sity nonlinearly. Most image manipulation software doesn’t take this into
account and just does arithmetic on the pixel values as though they were
linearly related to light intensity. This is obviously wrong. The questions
are how wrong, and for what pixel values is the problem worst and best?

Let’s review the two basic concepts.

Compositing
Compositing

A full color pixel has four components: a transparency value, alpha, and
three color primaries that are implicitly already multiplied by the alpha

value:

The most useful image-compositing operation, called over, simulates
one partially transparent pixel in front of another. The over operation of a
foreground F in front of a background B is defined as

red green blue alphaF F F F = F

over 1 alphaF≡ + −F B F BΕ Φ



Since each pixel component is treated identically, I will simplify by only
dealing with the calculation of one component. I’ll call a generic compo-
nent of F, f ; a generic component of B, b; and the alpha component of F, a.
Our basic calculation is then

The parameters a and b can have values from 0 to 1. Since f is premul-
tiplied by a, we have f ≤ a.

Some applications have occasion to composite images with nonpre-
multiplied colors. To distinguish this case, I’ll call the generic nonpremul-
tiplied color component g, with g = f/a. We then have another basic
calculation:

All these parameters, f, g, a, and b, are assumed linearly related to light
intensity.

Display Gamma
Display Gamma

L ight output from CRT display electronics is not linearly related to input
voltage. The light intensity I as a function of the voltage V from the

DACs on the display card is approximately

I = V γ

This means that an 8-bit pixel value sent directly to a DAC does not en-
code intensity linearly.

Many people who generate images with painting programs just pick
colors that look good in the final image, little knowing that they are im-
plicitly generating pixel values with the gamma of their personal monitor
burned into them. And different monitors have different values of gamma,
explaining why an image created on one system might not look too good
on another system. There are, however, standards for explicitly specifying
the translation from linear light-intensity space to nonlinearly encoded
pixel values. For example, for digital video, the algorithm to go from a
“linear” representation f to a video pixel value p is

if(f<.018) fTilde = f*4.50;

else fTilde = 1.099*pow(f,.45) -.099;

p = round(fTilde*219 + 16);
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On the computer side, a nonlinear encoding standard called sRGB uses a
slightly different function. The exact algorithm is

if (f<.00304) fTilde = f*12.92;

else fTilde = 1.055*pow(f,1/2.4) -.055;

p = round(fTilde*255);

Both of these functions have small linear
regions and shifted power function re-
gions. The net result, however, is pretty
close to a power function with a gamma of
about 1/2.2 for sRGB, and 1/1.9 for video.
See Figure 9.1.

Notice also that, in going to 8 bits, the
video conversion uses a scale factor of 219,
while sRGB uses a scale factor of 255.
More information on this is available at
www.color.org/contrib/sRGB.html or at http:
//w3.hike.te.chiba-u.ac.jp/IEC/100/PT1966/
parts/part2/1966_7a.pdf.

This nonlinear encoding actually has
an advantage in that it approximately mod-
els the perceptual space of the eye. When a
nonlinearly encoded pixel is quantized into
the typical 8-bit byte, the jumps between
pixel values are roughly equal perceptually.

Linear/Nonlinear Notation
Linear/Nonlinear Notation

F or notational convenience, I will use tildes (Ñ) to identify stored pixel
values that are nonlinearly related to light intensity. (Get it? A tilde is

not a straight line.):

This nonlinear encoding doesn’t change the range of values of a pixel; all
values, tilde or no, range in value from 0 to 1.

Referring to Figure 9.1, I will write the function that transforms a lin-
ear intensity value to a gamma-encoded value as N, for “Nonlinearize,” so
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I will name the inverse of this function L, for “Linearize”:

Here are a few identities:

The following relation is precisely true only for pure power functions, but
is close enough for real-world encoding functions:

Converting into and out of linear space was the subject of Chapter 5,
“Dirty Pixels,” of Jim Blinn’s Corner: Dirty Pixels.

The Good, the Bad, the Ugly
The Good, the Bad, the Ugly

L et’s now state the problem in algebraic terms, using the above notation.
If we were given linearly encoded input pixel values, the calculation of

the linearly encoded result is simple:

This, for example, is the calculation I optimized earlier, in Chapter 7.
On the other hand, if we are given input pixel values that are

nonlinearly encoded, and we wish a nonlinearly encoded result, the calcu-
lation should first linearize all input quantities, do the calculation, and
reencode (nonlinearize) the result:

This is basically the technique I presented in Chapter 17, “‘Composting—
Practice’” of Jim Blinn’s Corner: Dirty Pixels. It’s slower, but still accurate.

On the third hand, most image manipulation programs don’t do this.
This might be either because programmers are unaware of the problem or
because they are scared of the necessary arithmetic. What they do is sim-
ply pretend the problem isn’t there and calculate on the nonlinear pixel
values as though they were linear. This means that they approximate the
correct value with
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So how bad is this? Let’s see.

Scenarios
B efore getting into error analysis, I want to generalize a bit. There

are actually several varieties of situations that can occur depending on
the encoding format of the new foreground image. I will discuss four
possibilities:

1. Both foreground color and transparency components are
nonlinear. This is the example shown above.

2. The alpha component is coded linearly. This might seem
to make sense; since alpha represents the geometric coverage of a
pixel, a display device–dependent alpha might seem wrong. As it turns
out, this technique has many problems.

3. Linear intensity and linear alpha. The foreground pixel
might come from some algorithmic calculations such as antialiased
lines or a 3D rendering system.

4. Nonlinear nonpremultiplied foreground image. Both im-
ages might come from a scanner or paint program, while the alpha
value comes from some algorithmically generated blending matte.

In each case, the correct result comes from linearizing any nonlinear input
values, doing the calculation, and then renonlinearizing the result.

Error Analysis
Error Analysis

T here will be three things we will want to know about each
approximation:

■ When is it correct?
■ When is it the most incorrect?
■ When are these inaccuracies most visible?

When Correct?
The approximation is correct whenever
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You can usually just look at the formulas for and and guess at some
parameter ranges where the error is zero, usually at the extreme values of
the parameters. A more general technique, though, is to solve for the sur-
face defined mathematically by E = 0. This can be made less messy by ap-
proximating the L function with The resulting equation will be
more algebraically tractable, and can give us hints at where the true error
function is zero. I’ll use this approximation to the L function a lot, so I’ll
give it the name G2 to imply “Gamma = 2.”

Most Incorrect?
We can usually guess that the maximum error will be on a face or edge of
the parameter space. This can reduce the calculation from a three-parame-
ter ordeal to a one- or two-parameter cakewalk. When I solve for these, I
will give them the names for the most positive error, and for the
most negative error.

Most Visible?
The worst possible situation for an approximation is when a transparent
color is composited over a background of the same color. Ideally, the result
should be the original background color. Mathematically, this situation is
where

You can rearrange this to get

(This makes sense intuitively since f/a is the color of the foreground pixel
with the transparency divided out.) Any errors in the approximation on
the surface f = ab will be the most visible. I’ll denote errors on this surface
as Ev.

Scenario 1: ( )over
~ ~ ~
f ,a b

Scenario 1:Χ ∆
~
~ ~

f, a bover

T he calculations we are comparing are
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The possible values of and fill a triangle in the
plane. The possible values of extrude this trian-

gle into the third dimension. See Figure 9.2.
Where is the approximation correct? Well, plug

into and and you see that they simplify
down to the value This is not too surprising; if
the foreground pixel is opaque, it completely re-
places the background pixel with no error, even with
the approximation.

Plug into the expressions, and they also
simplify to In other words, when compositing
over a black background, the approximation always
gets the right answer. So far so good.

To find the general case for zero error, we do the following trick.
Equate to get

Now use the approximation that to get

A bunch of algebraic canceling and factoring, which I won’t bore you with,
gives us the equation of the general surface in space where this
approximate error is zero:

The first two factors are the conditions we knew already. The third,
amazingly enough, is just our maximum visibility surface. In fact, plugging
it back into the original error formula shows that it is accurate even for
general L functions. In other words, at just the visual situations
where errors would be most apparent, so

Now let’s try to find where the error is worst
over the space of possible values of . In Fig-
ure 9.3, I’ve shaded in the three surfaces where the
approximation is exact: (the triangular floor),

(the back wall), and (the twisting
surface that sweeps from the ã axis to the edge
at ). This last surface divides the parameter
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volume into two regions, one where the approximation is too high, and
one where it’s too low. The location of maximum errors will be on the
walls farthest from this dividing surface. The largest negative error will be
on the wall; the largest positive error will be on the wall. Let’s
find these.

The largest negative error will be on the surface:

The error is proportional to so it is largest where We can approxi-
mate the worst possible value for ã along this parameter edge by using G2.
This gives us

Setting the derivative of this to zero and solving for ã gives us
with the error value itself being

This is a pretty big error out of a total parameter range of 0 to 1! If
these values are scaled to an 8-bit byte, the correct r is 180, while the ap-
proximate calculation gives 75, for an error of −105.

Visually, this means that placing transparent black over white would
result in a much darker value than it should. How bad could that be? Just
looking at the resulting gray square, you wouldn’t have any reference for
what the correct value was. What’s the worst possible visual effect this can
produce?

One place where accurate tonal reproduction is important
is in antialiasing. In Figure 9.4, I show an antialiased black line
drawn with correct and approximate arithmetic. The approxi-
mate line is darker and appears too wide, and the antialiasing
has been messed up. I won’t vouch for the transfer function of
the printing of this figure, but the approximate line looks
mighty ropey on my monitor.

Next, the largest positive error of our approximation is on the front
surface of the parameter space, where This represents various
transparencies of white. The location of maximum error is harder to solve
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for explicitly, but with a little numerical experimentation I found the maxi-
mum problem at approximately

The visual interpretation of this is that transparent
white on a gray background will look too bright. Figure
9.5 shows a white line on a gray background. It’s not so
ropey as Figure 9.4 since the maximum error is much
smaller.

Scenario 2:Χ ∆~
,

~
f a bover

Scenario 2:Χ ∆
~

,
~

f a bover

T his is just like scenario 1 but with the alpha com-
ponent encoded linearly. I originally thought this

was a good idea, advocating it in Chapter 17, “‘Com-
posting’—Practice” of Jim Blinn’s Corner: Dirty
Pixels, but the more I’ve played with it the less I like
it. The parameter space appears in Figure 9.6. The

surface has become the curved surface

The calculation is

Let’s see what effects this coding has on the approximation error.
We again find the zero error surfaces by equating applying L

to both sides, and using G2. Some algebra and the surfaces of zero error
reveal themselves:

Once again, we get no error for compositing over a black background,
( ) or wherever the foreground object is opaque (ã = 1). The third
error-free surface term presents a problem, however. It shows that we no
longer have the nice property of zero error where f/a= b. This means that
it is possible to apply one transparent color over the same colored back-
ground and get a visible seam. We can find the worst-case situation by sub-
stituting into the error calculation and get
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So

The maximum error on this surface is at The
visual interpretation of these parameter values is that we are painting a
one-quarter transparent white over opaque white. The correct answer is,
of course, white: The approximation, however, gives a value of

Wow! Not only is it too big, but it overflows beyond the range
0 to 1. Thus, the “ghost in a snowstorm” (transparent
white over white) would be visible using the approximate
calculation. Even opaque white over white causes prob-
lems if the edges are antialiased. The alphas of the pixels
range from 0 outside the edge to 1 inside it. The error in
the approximation, as calculated above, is zero for a = 0
and for a = 1, and maximal in between. The inside of the
ghost is invisible, and the outside of the ghost is invisible;
just the edges will show up. Figure 9.7 shows a (linear)
ghost. I have here drawn light gray over light gray to

avoid the overflow problem. I have also made the line thicker and slightly
darker than the background so that it shows up for comparison purposes.

What other errors are there? The maximum negative error over the
entire parameter space is still along the edge, where

Using G2, we can approximate the worst case at

Thus, a black antialiased line over a white background will look too dark
and ropey, though not as much as with scenario 1. See Figure 9.8.

Scenario 3:Χ ∆f a b,
~

over
Scenario 3:Χ ∆f a b,

~
over

T his common scenario happens when a program generates
the foreground image and alpha in linear space by some al-

gorithmic process such as a 3D renderer. This is what happens
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when we try to overlay computer graphics on top of digital video, for ex-
ample. The calculations are

Our technique of finding the general zero-error
surface generates a second-order expression that isn’t
factorable into three simple surfaces. Instead of pursu-
ing this, let’s look at a few key locations in parameter
space to get an idea of the error shape.

Checking the edges of the parameter space, we
find that the error is zero along the five edges:

I’ve drawn these edges darkened in Figure 9.9.
Looking at the bottom face, we discover that

Use G2 to find an approximate maximum value of

Note that this maximum error region is a line in parameter space rather
than at just one point.

Drawing a white line over a black background will generate parameter
values along the edge that pass across this region and show a
maximal problem. The error as a function of a will be

See Figure 9.10.
Next, on the top face of the parameter space, we have

Solving for the maximum error gives

Again, this maximum error region is a line in parameter
space.
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An antialiased black line over a white background generates parameter
values that pass across this maximum error region. The error here is

This is the same as the line in Figure 9.8.
Finally, let’s look at the error on the maximum visibility surface

Plug this into the error definition:

Thus the error will be maximum at approximately

Here again we have the “ghost in a snowstorm” effect by
compositing dark gray over dark gray. See Figure 9.11.
Here, though, the error is worst when a = 1, so the ghost
appears as a darker body rather than as an outline.

Scenario 4:Χ ∆~,
~

g a bover
Scenario 4:Χ ∆~
,

~
g a bover

T his scenario occurs when we blend two nonlinearly encoded images,
such as painted or scanned images, with a linearly encoded matte. The

calculation is

The error is zero at a = 0, a = 1, and at
This last is also the maximum visibility surface for
this scenario, so we get no ghost effects:

Ev = 0

These zero-error surfaces are colored gray in Fig-
ure 9.12.

The error is always negative wherever it is not
zero. The locations of maximal error are along the
edges shown in the figure. They are
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and

Applying G2, we find that these are approximately at

Once again, the worst case is with white over black, or with black over
white. The lines look the same as in Figures 9.8 and 9.10.

What Do We Do about This?
What Do We Do about This?

I see three ways to deal with this situation, none of which is ideal:

1. Live with the error as a real-time approximation to the correct image.
The problem with this is that many image-editing programs that do

this approximation are not really real-time applications; the image is
ultimately destined for a printer somewhere. These programs can very
well afford to take the time to generate the correct image. Another
problem with this cop-out in real-time systems is that moving images
will look optimally bad because the antialiasing is defeated.

2. Encode all pixels linearly and perform calculations in this space. Then, for
display, translate to the appropriate nonlinear display space by using a hard-
ware lookup table.

The main problem with this technique is that there is already an ex-
tensive library of nonlinearly encoded images (both stills and video). I
have another objection to this, at least in the 8-bit arena, which has to
do with quantization error. A lookup table that translates “linear” 8-bit
pixels into 8-bit DAC inputs through a nonlinear table will, of neces-
sity, map several pixel values at the low end into one output DAC
value. As mentioned in Jim Blinn’s Corner: Dirty Pixels, for a gamma of
2, only 194 distinct values will appear in the table. To preserve the
same dark resolution as you have in nonlinear 8-bit encoding, you
need at least a 17-bit fixed-point number. A better solution would be
to use 16-bit fields for the “linear” representations, but to encode
them as a supershort floating-point value.

3. Linearize pixel values before doing calculation and unlinearize after you
are done.

This is the slow but correct approach. Actually, depending on when
you store the nonlinearized result, this approach merges with the pre-
vious one. The search for various ways to speed up the conversions
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could be a fruitful area for future research. In Dirty Pixels, I sped up
the calculation as much as I could by using a table lookup for L and a
binary search for N. Another approach might be to use higher-order
approximating functions that are more accurate but that stop short of
doing exponential calculations, or by playing with the techniques de-
scribed in Chapter 8 of this book.
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Chapter Ten: W Pleasure, W Fun

C H A P T E R T E N

W Pleasure, W Fun
M A Y – J U N E 1 9 9 8

T he whole point of doing 3D graphics is the third dimension. But since
the screen is only 2D, the third dimension appears only indirectly in

terms of perspective and occlusion. Correct occlusion testing is, however,
fairly sensitive to precision problems in the depth calculation. In this chap-
ter, I will review the traditional way to represent depth and introduce a
new technique that appears in the new generation of 3D graphics boards.
This technique has become practical as a side effect of perspective-correct
texture-mapping hardware. Both ways have their good and bad points, so
I’ll finish up by establishing some rules of thumb on which to choose in a
given situation.

Mathematical Niceties
Mathematical Niceties

T o simplify things a bit in this discussion, I’m not going to include the y
coordinates in any calculations. The problem can be adequately under-

stood in terms of only the x, z, and w coordinates, and the reduction in
dimensionality will simplify things considerably.

Next, let’s define our coordinate systems. There are three of interest
to us:

1. Eye space: All objects are translated so that the eye is at the origin and is
looking down the positive z axis (this, incidentally, is a left-handed co-
ordinate system).

2. Perspective space: This occurs after multiplying points in eye space by a
homogeneous perspective transformation.



3. Screen space: This occurs after dividing out the w component of the
perspective space points.

Finally, there is the question of notation. A mathematical symbol can
convey a lot of information if you give it a chance. The mathematical sym-
bols I use here will designate coordinates of various points in various coor-
dinate systems. The three things, then, that we want to explicitly convey
are

■ The name of the point
■ The component (x, z, or w)
■ The coordinate system

The symbology available to us consists of letters, subscripts, and other
mathematical decorations applied to letters. I will use the following
choices:

■ The component will be designated by the main letter variable: x, z,
or w.

■ The coordinate system will be a decoration over the letter as follows:
x (a bare letter) means eye space

means perspective space before w division
means screen space (perspective space after w division)

Essentially, the number of wiggles over a letter tell how many trans-
formations it has gone through.

■ The name of the point will be a subscript.
For example, the z coordinate of point 0 in perspective space will be de-
noted as Any equations with coordinates that appear without subscripts
will indicate generic relations that apply to all points.

Traditional Perspective
Traditional Perspective

I described the derivation of the homogeneous perspective matrix in
Chapters 3 and 18 of Jim Blinn’s Corner: A Trip Down the Graphics Pipe-

line. If we only consider the x, z, and w components, a typical homoge-
neous perspective matrix looks like

This gives the following generic relations between components in the var-
ious coordinate systems.
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Eye to perspective:

Perspective to screen:

or, composing these two:
Eye to screen:

A key property of the homogeneous perspective transform is revealed
when we examine what happens to a straight line segment in eye space
when it is transformed into screen space. The line segment generated
by linear interpolation between eye space endpoints and
can be represented by the parametric equation

What does this shape transform into in screen space? Plug in the eye-
to-screen transform equation and we get

At first, this might look fairly mysterious. Our shape is a parametric
curve with the x and z coordinates generated by hyperbolic functions of α.
It never ceases to amaze me that plotting one hyperbola against the other
yields . . . a straight line. Over the years, I have collected various ways to
show this. The simplest is just to solve for alpha and plug that into the
expression for to get a linear equation in and You can never have
too many visualizations, however, so here is another one more appropriate
for the current discussion. The exposition will be easier to manage if we
write the expressions for and as
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The key thing to note is that both and have the same denominator.
The reason this is significant is that it places the asymptotes of and
at the same place: α = −F/E. We can therefore move both asymptotes to
the origin by changing the parameterization via the replacement:

α′ = E + Fα

Putting this into the equation gives

Now this is much more obviously the parametric equation of a straight
line segment. And it brings up another important property: equally spaced
points in eye space (equal steps in α, and therefore in α′) transform into
nonequally spaced points in screen space (as evinced by the 1/α′ term).
We’ll make more of this later.

Anyway, we can now see that straight lines transform into straight
lines and, more generally, flat polygons transform into flat polygons. This
means that we can calculate values of at just the triangle vertices and lin-
early interpolate these values in screen space in order to find the proper
value for depth comparisons. A depth buffer implementation of this would
properly be called a buffer in our notation. Figures 10.1(a) and 10.1(b)
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show the distortion induced on a couple of straight segments due to this
perspective transform (ignore Figure 10.1(c) for now).

resolution
Now it’s time to bow to reality and take a look at some resolution issues. If
we use the value of for depth comparisons, how does resolution in
translate into resolution in eye space z? Start with the mapping from eye
space z to screen space We have, generically

In other words, the coordinate is a scale and offset applied to one over
the eye space z coordinate. The values of the scale and offset will deter-
mine the range of values we expect to have to deal with for It is typical to
specify these scales and offsets in terms of two depth values in eye space
called z-near, zn, and z-far, zf , that will map to and A little
brain exercise will show that, in order to make this happen, we must have

Putting these together gives the following, which I’ve written in a whole
buncha different ways:

In a typical application, we would pick zn and zf to bracket our data in
eye space z, set up the matrix appropriately, and throw a bunch of points
down it, knowing we will get values between 0 and 1.
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Figure 10.2 shows the mapping from eye
space z to screen space for various values of
zn as a proportion of zf . We note that if zn is
much smaller than zf , the values of are all
smushed together near the value 1, a pros-
pect that is dangerous to the health of our
resolution. The recommended practice is to
make zn as far from the eye as possible. This
gives the more linear relationship of the curve
at the right side of Figure 10.2. Now let’s see
explicitly how the choice of zn affects depth
resolution.

Suppose we use a fixed-point representa-
tion for The values we can represent are
equally spaced along the axis. That’s all very
nice, but it’s physically more meaningful to
see how these quantization bins look in eye

space. We can find these by mapping equal steps in back to the z axis.
The different choices for zn from Figure 10.2 will give the different
quantization spacings shown in Figure 10.3(a) using (for clarity) 16 quan-
tization steps. You can see that a low value for zn gives a rather bad situa-
tion. Detail on objects that are far from the eye can all map into the same
quantized value.

If we happen to use floating point for the situation is even worse.
Here, our 16 quantization steps are more or less logarithmically spaced
along in a way that spreads things out even more at large distances. Fig-
ure 10.3(b) shows the logarithmic spacing of floating-point values exacer-
bating the nonlinear spacing of z values.
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Texture Mapping
Texture Mapping

N ow, off on another tangent for a bit.
If you are performing texture mapping on a triangle, it is necessary to

calculate, for each pixel, the appropriate u, v texture coordinate values. You
generally specify the u and v at triangle vertices with the implicit assump-
tion that they will be linearly interpolated across the triangle in eye space.
That is, u and v are linear functions of eye space x and z. But when render-
ing, we want to calculate u and v as functions of the screen space How
do we do this? I gave one derivation in Chapter 17, “Hyperbolic Interpo-
lation” of Jim Blinn’s Corner: A Trip Down the Graphics Pipeline. Here’s a
different one.

What we have is two categories of parameter. The first category is x
and z and any others that are linear functions of x and z. These include
texture coordinates u and v, and perspective space coordinates and
If we linearly interpolate xL and zL by the parameter α according to

then we can find all these other parameters by interpolating with the same
α value:

The second category of parameters consists of the screen space coor-
dinates and which are not simple linear combinations of x and z.
When stepping across a scan line, we interpolate between screen space
endpoints by using uniform steps of β in the formulas.

(10.1)

We desire a relation between α and β. Going back to the definition of
we can write it in terms of α as
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Now pull in the transformation equations from perspective to screen
space, modified slightly:

so that

Add and subtract to the numerator and fiddle around a while,
and you can convert this to

Comparing this with Equation (10.1) gives us the following relation
connecting interpolation in eye space with interpolation in screen space:

Or, solving for α:

Now we can calculate uL in terms of β. Plug and shuffle to get

Now it’s time to take a deep breath and interpret this result. We calcu-
late the values of and at each endpoint of a line (or at each
vertex of a triangle) and then linearly interpolate these values in screen
space. Divide them to get uL. This mechanism works for any parameter
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that is linear in eye space. Since we are going to have to do this for several
such values (u, v, and perhaps even vertex colors), it is best to calculate the
value of once and then multiply it by the interpolated values of
The interpolation equation for is

so we linearly interpolate the denominator, that is, and do just one
division (per pixel) to get .

W Buffering
T he calculations necessary for texture mapping give us a new way to do

depth testing. Since we are going to calculate anyway, doing a divide
per pixel, we can simply use (which is really a scaled version of eye space
z) for depth testing. That is, instead of doing buffering, we would be
doing buffering. Note that this is not the same as the classic error of
simply interpolating (or z) linearly in screen space. buffering works
properly only if we calculate as the correct hyperbolic function of β (and
hence of screen x). This means that flat lines and planes are no longer flat
in a buffer scheme. Figure 10.1(c) shows the buffer version of Figures
10.1(a) and 10.1(b).

Note that with buffering, we do not need to specify a value for zn.
That’s good because this parameter has always been confusing to com-
puter graphics artists. Since it doesn’t appear at all in the expressions for
we don’t need to worry about it anymore.

Resolution Comparisons
Resolution Comparisons

U nder what conditions is the resolution of buffering better than buff-
ering? To properly compare these, we need to scale the anticipated

range of to lie between 0 and 1 just as we did for To do this, just set
the value of d in the perspective matrix to 1/zf . Since is just a scaled ver-
sion of eye space z, whatever quantization steps we use for will have the
same spacing in z: equal spacing for fixed point and (approximate) loga-
rithmic spacing for floating point.

To compare the sizes of quantization bins between the two schemes,
we can compare the slopes of the depth values as functions of z. A large
value of derivative is good. It means that a large variation in or gives
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a small variation in z. To review, we have the two competing depth
functions:

The derivatives of these functions are

So buffering gives better resolution if

that is, if

(Don’t panic, c will always be negative.) Applying the definitions of c and d,
this converts to

(10.2)

How can we interpret this? Figure 10.4
contains my visualization, showing the prop-
er choice of or buffering for all possible
values of zn. Here’s how it works. Each verti-
cal slice of the diagram stands for a choice of
zn as a proportion of zf . We will only need to
consider values of z/zf in the shaded part of
that slice, from the diagonal line (represent-
ing z = zn) up to the top line (representing z
= zf). The curved line is a plot of the right
side of Equation (10.2). If z/zf is below this
curve, we would be better off with buffer-
ing; if it’s above, we would be better off with

buffering. Of course, you have to pick one
or the other for the entire scene; this graph
just tells you how much of your z range is
likely to get into trouble. Finally, note that if

then buffering always wins.
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Summary
Summary

buffering is best if you must make zn very small, as for example, in
room walk-throughs. buffering is best if you can get away with mak-

ing zn a noticeable fraction of zf , as for example, in CAD, where you are
examining a single object held virtually in front of you. This works well in
this case mainly because the mapping for z to becomes pretty close to
linear. The breakpoint is at about zn = 0.3zf . (See the vertical line in Fig-
ure 10.4.) If zn is nearer than that, more of your z range would benefit from

buffering. If zn is farther than that, more of your z range would benefit
from buffering.

This is not the last word on the subject. We still need to investigate
the desirability of using floating point versus fixed point for depth resolu-
tion. And how much resolution do you actually need? Maybe you do need
more resolution for objects at small z distances because mistakes are more
visually apparent when they’re close to you.
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Deleted Scene
Test Floating Point : Figure 10.3(b) suggests an alternative that can
use the effects of floating-point quantization spacing to cancel out the
nonlinearity in : instead of calculating we calculate Distant ob-
jects map to values near zero, and close objects map to values near 1 with
much more evenly spread quantization steps. We, of course, have to re-
verse the sense of our depth comparison test in this case. Of course, we
have to be careful that we aren’t fooling ourselves with this. We don’t
want to calculate after calculating the quantized (and information-
destroyed) We must build the calculation into the perspective matrix,
which then becomes

and the depth value calculation becomes

I haven’t pursued this.
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Chapter Eleven: Ten More Unsolved Problems in Computer Graphics

C H A P T E R E L E V E N

Ten More Unsolved
Problems in

Computer Graphics
S E P T E M B E R – O C T O B E R 1 9 9 8

A t SIGGRAPH 1998, I had the honor of delivering the keynote address
in celebration of the 25th annual conference. In my talk, I reminisced

about my recollections of all the 25 conferences I had attended. I com-
pared the state of computer graphics then to its state now. I predicted the
future of the field. I performed a now-classic routine by listing my choice
of ten unsolved problems in computer graphics. I have since realized that a
keynote address is like a Ph.D. thesis. After you create it, you can extract it
chapter by chapter and publish it as several papers. Here, then, is the first
extraction—ten unsolved problems.

History
History

L et’s start by reviewing some of the past lists of unsolved problems. Judge
for yourself how many of these historical problems have been solved

by now.



Sutherland 19661

The tradition of posing unsolved problems in computer graphics goes
back, as most CG things do, to Ivan Sutherland. He started it all with a
1966 article in Datamation with the following:

1. Cheap machines with basic capability
2. Basic interaction techniques
3. Coupling simulations to their display
4. Describing motion
5. Continuous tone displays
6. Making structure of drawings explicit
7. Hidden line removal
8. Program instrumentation and visualization
9. Automatic placement of elements in network diagrams

10. Working with abstractions (scientific visualization)

Newell and Blinn 19772

In 1977, Martin Newell and I presented the following thoughts at the
ACM national conference. The unsolved problems we focused on were
concerned primarily with realistic rendering. We were a bit lazy and could
only think of six problems.

1. Increasing scene complexity
2. Fuzzy objects (hair, clouds)
3. Transparency and refraction
4. Extended light sources
5. Antialiasing
6. Systems integration

Heckbert 19873

Paul Heckbert presented an update to unsolved rendering problems in
1987.

1. Converting implicit models to parametric
2. High-quality texture filtering
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3. Antialiasing
4. Shadows without ray tracing
5. Practical ray tracing
6. Practical radiosity
7. Frame-to-frame coherence
8. Automating model culling
9. Smooth model transitions

10. Affordable real-time rendering hardware

Siggraph Panel 19914

By 1991, things had become complex enough that it took a whole commit-
tee to identify key unsolved problems.

1. Managing scene complexity (Barr)
2. Tools for serious modeling (Brooks)
3. Large-scale user interfaces (Card)
4. Multimedia (Clark)
5. Automatic graphic design (Feiner)
6. Robust geometric algorithms (Forrest)
7. Better rendering (Hanrahan)
8. Graphics standards (van Dam)

When Is a Problem ÒSolvedÓ?
When Is a Problem ÒSolvedÓ?

S o now it’s my turn again. But to keep you on pins and needles, before I
get into my list of unsolved problems, I want to talk a bit about what the

word solved means. Is a problem solved when its solution has been shown
to be possible even though very expensive? Or does a true solution need to
be cheap and easy to implement?

Some of the problems I will describe here have, indeed, been solved in
the theoretical sense. The problem remains unsolved in the practical
sense, though, because cheap and fast solutions are still elusive. As you will
see, many of the problems I present are more sociological and marketing
related than technical. Further, many of them have multiple parts, and
there is much overlap. I do, after all, have to come up with exactly ten
problems.
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Ten More Unsolved Problems
Ten More Unsolved Problems

1. Novelty
The first problem is simply finding something that hasn’t been done yet.
Let’s face it; all the easy problems have been solved. Sometimes it seems
that computer graphics research consists of finding some new subtle light-
ing effect that hasn’t yet been modeled.

2. Education
There are two parts to this—learning and teaching.

Learning (keeping up with what has been done). Not only do you have
to find a problem that hasn’t been solved, you have to know that it hasn’t
been solved. It used to be that the yearly SIGGRAPH conference pro-
ceedings were about the only place where computer graphics advances
were published. Now there are lots of places to show off your work. You
can no longer keep up with every new development by reading just the
SIGGRAPH proceedings. Nowadays, it’s sometimes harder to discover an
existing solution to a problem than it is to reinvent the solution yourself.
There’s lots of reinvention in this field; computer graphics is almost too
easy in that regard.

Teaching (dissemination of new discoveries). Just because somebody
solves some problem doesn’t mean that others will use that solution. This
happens because other graphicists either aren’t aware of the solution or
don’t understand it. You can think of this as a marketing problem. Two ex-
amples that come to mind are premultiplied alpha (more about this later)
and specular reflection calculation by raising the cosine of some angle to a
power. I mean, Phong was a great guy and all, but his use of the cosine
power was a simple approximation to a function that we have dramatically
improved on many years ago. Despite this, rendering systems still use “co-
sine power” as a property of surfaces as though it actually had physical
meaning.

3. Systems Integration
This is the problem of keeping all the balls in the air at once, that is, how
to use all the tricks in one production. Just because one researcher can do
cloth, one can do faces, and one can do hair, doesn’t mean that all anima-
tion systems can suddenly put them all together. The new technology of
component software and plug-ins to existing software shows promise here.

162 Chapter Eleven: Ten More Unsolved Problems in Computer Graphics



4. Simplicity
I could keep this section simple and just say, “Make things simple.” But I
won’t because life is not so simple.

How can we keep this stuff simple enough to use? Having a separate
component for cloth, hair, skin, trees, water, physically based motion,
deformations, texture synthesis, weathering, solid textures, multiresolu-
tion models, image-based rendering, yadda-yadda . . . could be a bit
cumbersome.

But is simplicity even possible? Is it possible to make a simple com-
puter graphics system that can generate complex images? Consider other
systems that are complex enough to do interesting things. The telephone
system has a conglomeration of old and new technology that still pretty
much works. The human brain has several layers of legacy processors in-
herited from our reptilian and mammalian ancestors. Maybe simplicity is a
hopeless goal.

Nonetheless, one should still strive for simplicity. Let’s face it, people
don’t read manuals anymore. If a feature of a program is not obvious from
playing with its user interface, then users assume that the feature is broken
or nonexistent.

5. Better Pixel Arithmetic Theory
Our basic concept of pixels as red, green, blue, and alpha channels is in-
complete. I can see at least three main problems. One is largely a matter
of definition and education, while the other two involve integration of
compositing with other parts of the imaging process.

Problem one concerns premultiplication of the color channels by the
alpha channel. We’ve long known that premultiplication has many advan-
tages. For example, it allows compositing arithmetic on all channels to be
identical, linear filtering to commute with compositing, and the set of
pixel values to be closed under composition. (This is because the result of
any pixel-compositing operation is a premultiplied pixel. Therefore, the
first operation in a chain of operations moves us into the premultiplied do-
main automatically.) Nonetheless, several systems store colors unmulti-
plied by alpha. This indicates a fundamentally different interpretation of
the meaning of the alpha channel: alpha as a cropping stencil. We need to
understand this difference and realize that the alpha value has subtly dif-
ferent meanings when used as a fundamental component of a pixel and
when it is used as a stencil to shape an existing image. I call this the local/
global alpha distinction. Both uses of alpha are important, and systems
should support both.
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The second problem is that the conventional alpha channel interpre-
tation assumes that edges of a foreground and background object are un-
correlated. Some useful algorithms, on the other hand, divide the screen
into nonoverlapping polygonal regions. When two adjacent regions are
rasterized, their boundaries, of course, coincide, and are thus completely
correlated. These rasterized regions cannot be merged using the standard
uncorrelated compositing algebra.

Third, we must consider combining compositing operations with light
reflection models. The fundamental operation of light reflection is the
simulation of colored light reflecting off a colored surface or transmitting
through colored glass. A single alpha channel can only model partial geo-
metric occlusion of a pixel. It cannot adequately simulate a colored, par-
tially transparent surface. A separate alpha channel per color is still not the
ultimate answer, either. The complete physical simulation of spectral in-
teractions would seem to be necessary, but might be overkill. Some other
lighting-related arithmetic operations that must be included are the simu-
lation of after-the-fact shadow application and transparency effects at
boundaries of fogged objects.

A complete algebra on pixel values will be embedded in the deep in-
nards of any rendering system. Currently available compositing operations
do not address the above concerns. A more complete theory must be de-
vised and installed in the inner polygon tiling loops of future 3D APIs.

6. Legacy Compatibility
Time goes on, and we do things differently. Partly this is because we have
learned how to do things better than we did before, and partly it is because
technological improvements change the tradeoffs to make things practical
that weren’t before. Unfortunately, our history remains to haunt us in the
form of legacy applications and data. This applies to operating systems,
3D APIs, file formats, and on and on. Simply pitching out all legacy items
is not a good idea. Instead, progress is a balancing act of how to not aban-
don the old while allowing the new.

One particularly interesting example of this is the coming conver-
gence (or collision) of television technology with computer imaging. We
will have to face the fact that TV pixels (even digital TV pixels) are not the
same as computer pixels. For one thing, TV pixels are not square. The
standard 4:3 ratio screen has 720:480 pixels, giving an individual pixel the
aspect ratio of 8:9. For another thing, TV pixels have a different range
than computer pixels. For digital TV, the byte value 16 corresponds to
black, and the byte value 235 corresponds to white (220 levels total). And
finally, TV pixel values do not linearly represent light intensity; they
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have a gamma correction value burned into them. Sometimes computer
graphics pixels do this, and sometimes they don’t. But when it is done, the
standard gamma correction for computer graphics is different from the
standard for TV pixels (see Chapter 9). Gamma correction has the advan-
tage of giving better resolution to darker regions of an image, but doing
correct image compositing with it is slow. The probable eventual solution
to this problem is to use 16 bits per color channel. Before this happens, we
will need to devise a standard 16-bit encoding (the meaning of the 16 bits)
that has at least as much dark resolution as 8-bit gamma-corrected pixels,
and that allows small negative values and greater-than-one values. Simple
fixed-point encoding still doesn’t have enough accuracy on the dark end.
Extending the current gamma encodings to 16 bits retains all the nonlin-
ear arithmetic problems we currently have. I think the best solution is to
use a 16-bit floating-point format.

7. Arithmetic Sloppiness
There are a lot of things we are doing wrong in image rendering, and we
know it. We do it anyway, though, to appease the great god of speed. Sur-
prisingly, this problem worsens because modern computers are so fast—
just fast enough that some algorithms are borderline real time. Program-
mers are tempted to do a sloppy job of pixel arithmetic to get their speed
just over the line into real time. This can often lead to an embarrassing
amount of arithmetic sloppiness in pixel calculations. I’ll mention a couple
of examples of this.

■ When processing pixel values, we often ignore the above-mentioned
nonlinear gamma encoding. We simply do linear calculations on this
nonlinear data. (I discussed this problem in more detail in Chapter 9.)

■ Conversions between, say, 5 bits per color channel and 8 bits per color
channel are trickier than most people realize. Proper conversion is not
a simple 3-bit shift and mask operation. A 5-bit quantity is a number
of 1/31 st’s; an 8-bit quantity is a number of 1/255 th’s. Proper con-
version requires multiplying or dividing by the unpleasant value

■ 255/31 ≈ 8.22.
■ Texture filtering often takes the form of simple bilinear interpolation

between the four nearest texels to the desired pixel. This bad interpo-
lation gives ugly diamond-shaped artifacts to the image.

The problem about all these picky details is that often the proponents of
bad arithmetic show images that are visually pretty much the same as cor-
rect ones. So what’s the big deal? How sloppy can we be and still get an
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image whose errors are below the threshold of visibility? What we really
need are better criteria for how accurate we need to be.

8. Antialiasing
At the turn of this century, the director of the U.S. Patent Office stated
that all possible inventions had already been invented. Bill Gates is often
quoted as having said that 640K of memory is enough for anybody. (He
was right.) I think I can become famous, too, by categorically stating what
will not happen (thus guaranteeing what will happen). I will therefore pro-
claim that

Nobody will ever solve the antialiasing problem.

(This problem, you will note, appears twice on our list of historical un-
solved problems.) No one will ever figure out how to quickly render legible
antialiased text in perspective. Textures in perspective will always be either
too fuzzy or too jaggy. No one will ever build texture-mapping hardware
that uses a 4×4 interpolation kernel or anisotropic filtering. And no one
will ever send me tickets to the Digital Domain Siggraph party.

9. A Modeling, Rendering, Animation Challenge
OK. So much for the hard sociological problems. How about a simple,
straightforward rendering challenge. Here it is:

Spaghetti

No, really. Consider that we can do cloth pretty well now (possibly due to
our obsession with rendering the human body). We can model how it
drapes and folds without self-intersections. Now cloth is a basically 2D
shape. Spaghetti is an essentially 1D shape. It should be even easier to
model. Such algorithms could also apply to piles of rope or string and even
conceivably to protein folding. And it will give new meaning to the term
Spaghetti code.

And remember, to respond to this challenge, you must solve all three
problems: modeling (shape), rendering (making pictures), and animation
(showing evolution over time). Don’t forget the sauce.

10. Finding a Use for Real-Time 3D
We all know that real-time 3D is cool. And what’s incredibly cool, and as-
tonishing to us old-timers, is the fact that you can now get real-time 3D
hardware for about a hundred dollars. What’s not cool is that the compa-
nies making these hardware cards are having a tough time staying solvent.
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The main applications for cheap 3D hardware, games, simply don’t have
enough adherents to support the industry. To keep 3D hardware cheap, we
need more large-scale uses for it. And I mean large scale, uses that virtually
everybody owning a personal computer will lust after. Fruitful areas might
include e-commerce and business data visualization.

Here’s another idea: a vision of better 3D user interfaces. Currently,
operating systems and applications have a lot of persistent settings that in-
dicate preferences and system setup information. In order to examine and
change these settings, you have to hunt around through a maze of win-
dows and menus to find the particular one that applies. Suppose we could
represent this system state in terms of 3D shapes rather than list settings.
The internal state of your program would then look something like an
old-fashioned car engine (one simple enough to understand, I mean). You
would see interrelations between components as shapes plugged into the
“system” shape. Direct manipulation of these shapes via a mouse or data
glove would make configuring your system a much more understand-
able process. (I am reminded of the scene from the movie Johnny Mne-
monic . . .)

Get Hopping
Get Hopping

I realize that people will mostly pursue the easiest of these: spaghetti. The
other problems will likely require group participation but are, probably,

rather more important. Whichever challenges you—hop to it! And let me
know what you find.
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Chapter Twelve: The Cross Ratio

C H A P T E R T W E L V E

The Cross Ratio
N O V E M B E R – D E C E M B E R 1 9 9 8

G eometry is the study of what properties of a figure stay the same as the
figure undergoes some transformation. For example, in Euclidean ge-

ometry, the allowable transformations are rotations and translations.
Properties that stay constant include distances and angles. For projective
geometry, such as we use with homogeneous coordinates, the transforma-
tions include perspective projections. In this case, one thing that emphati-
cally does not stay the same is geometric length. A
property that does, however, is something called
the cross ratio. Take a look at Figure 12.1 where
lines p, q, r, and s all intersect at the same point;
the cross ratio is the ratio of the ratios of the fol-
lowing distances:

This value is constant no matter where line m is
placed. It is also constant if the whole diagram
undergoes a homogeneous transformation (possi-
bly including perspective).

This has always puzzled me. If geometric distances aren’t preserved,
and ratios of geometric distances aren’t preserved, then how come the ra-
tio of ratios of geometric distances is preserved? Well, here’s a quick
demonstration.

χ=
AB BD
AC CD

A

B

C

D

p

q

r

s

m
E

Figure 12.1 The cross ratio



The First Ratio
The First Ratio

L et’s begin by calculating the Euclidean distance between points A and B.
I’ll start with the 2D homogeneous coordinates of each point, which I

will name as follows:

To calculate a Euclidean distance, we must turn these into the “real” coor-
dinates by dividing out the homogeneous w coordinate giving the two 2D
Euclidean points:

Then subtract giving

The desired distance is the length of this 2D vector. The fact that this
quantity doesn’t treat all three of the x, y, and w components symmetrically
is a hint that Euclidean distance is not a meaningful concept in projective
geometry.

Anyway, if we bash ahead to get the Euclidean length of the above vec-
tor, we would need to calculate the square root of the sum of the squares of
these two components—wotta pain. Instead, let’s pretend for a minute that
the line m is horizontal and points A . . . D line up horizontally. In that
case, the length of the vector is just the x component of the vector. In
other words,

In general, though, the line will be at some angle θ. In this case, the x
component will equal the length times the cosine of the tilt angle, or

For the collinear segment BD, tipped by the same angle θ, the x compo-
nent would be
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Here’s where the first ratio will come in to simplify life. The top half
of our desired cross ratio is the ratio between these segment AB and seg-
ment BD. And, by similarity, the ratio of the x components is the same
as the ratio of the lengths. Taking the ratio of the above two equations,
we find

The angle dependency cancels. Yay! We can calculate the ratio of lengths
without any squaring and square rooting.

The Second Ratio
The Second Ratio

N ow let’s look at the second ratio in the “ratio of ratios” game. Remem-
ber that what we are really interested in is

A little algebra on the AB/BD ratio turns it into

And by going through the same schtick, but everywhere changing B to C,
we can see that the second of our two ratios is

Now we can see why the ratio of ratios is something interesting homo-
geneously—it lets us cancel the ugly w component ratios. The whole cross
ratio then boils down to
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This is much more symmetric in x, y, and w, and closer to the sort of thing
we expect we can make homogeneously constant.

Constancy with Changing m
Constancy with Changing m

N ow we can ask why this ratio is independent of the position of the line
m. The root cause must have something to do with the fact that we

generate the points A, B, C, and D from the lines p, q, r, and s that have
the special relationship of all intersecting at the same point E.

First, then, here’s a brief reminder of the relationship between homo-
geneous points and lines. You can calculate the point at the intersection of
two lines by taking the cross product of the line vectors. This means that
the point at the intersection of the four lines is any of the six quantities:

The inclusion of the constants ci recognizes the fact that the cross prod-
ucts can represent the same intersection point even though there might
be a homogeneous scale factor applied to all three of the x, y, and w
components.

After some fooling around, I have found that, for our purposes, the
neatest algebraic way to use this relationship is to express the lines q and r
in terms of p and s. I’ll write this as

(12.1)

You can think of the pairs and as 1D homogeneous co-
ordinates for the collection of lines passing through E, the intersection of
p and s. Any point passing through this intersection has an pair
that describes it. Any nonzero multiple of an pair represents the
same line though.

Now, let’s relate this to our points. Remember, the cross product is
how we intersect lines, so we have

Write the interior point B in terms of the outside lines and points:
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We can then write the top half of the cross ratio as

Again, run through this derivation with C instead of B, and you get

The net cross ratio is now

The interesting thing about this is that the whole dependence on the loca-
tion of m has disappeared, as well as the dependence on which coordinate
(here we used x) we chose to use as the measure of distance ratios. That is,
it is only dependant on the orientations of the lines q and r relative to p
and s. Any line m� intersecting these will generate the same cross ratio.
The cross ratio is thus a property of the locations of the four original lines,
rather than the extra line m.

As another way of looking at this, start with the equations in (12.1) and
cross them with p and s:
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These are four vector equations. Turn them into scalars by dotting them
with m:

And now you can write the cross product in the following form:

Here’s another key fact: χ contains only the ratios of the alpha/beta pairs,
so it is also independent of arbitrary homogeneous scalings of the vector
for q and r. For example, if we replaced q with γq (geometrically the same
line), it means that we are scaling both qα and qβ by γ, which will again can-
cel out in the formula for χ.

Constancy under Perspective
Constancy under Perspective

N ow let’s see why the cross ratio is unchanged when we transform the
four lines via an arbitrary transformation matrix. If we have a transfor-

mation T that changes our outer two lines as

the inner lines will be

And similarly

r′ = rαp′ + rβs′

Even if we try to disguise line q′ or r′ by multiplying by some homoge-
neous scale, we get the same value of cross ratio—the ratio of ratios:
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A particularly interesting special case of this occurs when we take the
outside lines p and s as the x and y axes, and transform by a simple nonuni-
form scale factor. Numerically, this would be

From this we get

The alpha and beta components of q and r have changed to

The lines p and s haven’t moved, but the lines q and r both have. And the
ratios of the values of the lines q and r are different:

But sure enough, the ratio of ratios remains the same:

In other words, even though a transformation might not move the outside
lines p and s, it will move the inside lines q and r in such a manner that the
change in the ratio is matched by the same change in the ratio
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Summary
Summary

T he cross ratio is as much a property of the four mutually intersecting
lines p, q, r, and s as it is of the four collinear points A, B, C, and D. Any

line m that you throw across the lines will generate four points with the
same cross ratio.

You can, in turn, take any four collinear points A, B, C, and D,
and throw various collections of four mutually intersecting lines through
them. Each of these line collections will have the same cross ratio. Finally,
you can project any of these figures perspectively and also get an un-
changed cross ratio.

The true homogeneous nature of the cross ratio can best be seen by
writing it as

and reviewing the effect of an arbitrary homogeneous scaling on each of
the four lines. Remember that

(12.21)

■ Scaling only q will scale both qα and qβ, but this cancels out.

■ Scaling only r will scale rα and rβ, but these will cancel:

■ Scaling only p will require inversely scaling qα and rα to keep q and r
the same in Equation (12.1). These again cancel:

■ Scaling only s will require inversely scaling qβ and rβ. Same song, new
verse:
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From this, we can see the necessity of this arrangement of ratio of ratios in
constructing a quantity that remains homogeneously meaningful.

So, even though perspective transformations do not preserve dis-
tances, or ratios of distances, they do preserve these ratios of ratios of
distances.
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Chapter Thirteen: Inferring Transforms

C H A P T E R T H I R T E E N

Inferring Transforms
M A Y – J U N E 1 9 9 9

I n simple 2D texture mapping, you take a 2D image and render it on the
screen after some transformation or distortion. To accomplish this, you

will need to take each [X, Y ] location on the screen and calculate a [U, V ]
texture coordinate to place there. A particularly common transformation is

By picking the proper values for the coefficients a . . . j, we can fly the 2D
texture around to an arbitrary position, orientation, and perspective pro-
jection on the screen. One can, in fact, generate the coefficients by a con-
catenation of 3D rotation, translation, scale, and perspective matrices,
so we, of course, prefer the homogeneous matrix formulation of this
transformation:

In this chapter, though, I’m going to talk about a more direct approach
to finding a . . . j. It turns out that the 2D-to-2D mapping is completely
specified if you give four arbitrary points in screen space and the four arbi-
trary points in texture space they must map to. The only restriction is that

,
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no three of the input or output points may be collinear. This method of
transformation specification is useful, for example, in taking flat objects
digitized in perspective and processing them into orthographic views.

Our Goal
Our Goal

L et’s make the problem explicit by giving names to some quantities. We
are given four 2D screen coordinates and four 2D tex-

ture coordinates and we want to find the 3×3 homoge-
neous transformation Mst that maps one to the other so that

si Mst = witi (13.1)

See Figure 13.1. Note that we are not
given the wi values. Their participation
in Equation (13.1) acknowledges the
fact that even though the original input
and output points are nonhomogeneous
(their third component is 1), the output
of the matrix multiplication will be ho-
mogeneous. We will have to solve for
the w values as a side effect of solving
for the elements of Mst.

The Conventional Solution
The Conventional Solution

T he conventional way to solve this goes as follows. First, using the names
a . . . j for the elements of Mst, we can rewrite Equation (13.1) explic-

itly as

Multiplying out and equating each component gives us three equations:

Plug the last equation for wi into the first two and move everything to the
left of the equal sign:
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Write this as yet another matrix equation in terms of what we are solving
for, a . . . j:

Each input point gives us two more 9-element rows; four points gives
us an 8×9 matrix. Since this is a homogeneous system, that’s all we need to
solve for the nine values a . . . j (with an arbitrary global scale factor). One
way to calculate each of these nine values is to find the determinant of the
8×8 matrix formed by deleting the matching column of the 8×9 matrix,
so . . . nine determinants of 8×8 matrices. This is doable but obnoxious.
Looking at all those lovely zeros and ones on the left makes us suspect that
there is a better way.

HeckbertÕs Improvement
HeckbertÕs Improvement

I n his 1989 master’s thesis, Paul Heckbert1 made a great leap by splitting
the transformation into two separate matrices. He first used one matrix

to map the input points to a canonical unit square (with vertices [0, 0],
[1, 0], [1, 1], [0, 1]) and then mapped that square into the output points
with another matrix. See Figure 13.2.

Each of these matrices will be individually easier to calculate than the
complete transformation since the arithmetic is so much simpler. In fact,
the arithmetic turns out to be simplest for the second of these transforma-
tions, so we will solve that one explicitly. Naming points in the unit-square
space q, we want to find in the equation

qMqt = wtt
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1 Heckbert, P., Fundamentals of Texture Mapping and Image Warping, master’s thesis, University of California,
Berkeley, Dept. of Electrical Engineering and Computer Science, 1989 (www.cs.cmu.edu/�ph/#papers).



Let’s explicitly write out all components for all four input/output (q/t)
point pairs. I’ll recycle the names a . . . j and w0 . . . w3 for use in this
subcomputation, so be aware that their values are different from those I
used in the “conventional” solution:

This generates 12 equations:

Substituting the right column of equations into the left two columns
gives us

(13.2)

Then substituting the equations in rows 1, 2, and 4 into the third row gives
the two equations
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We juggle this into

(13.3)

Heckbert’s original solution did the “without loss of generality” trick
and assumed that j = 1. This works since we can only expect to solve for
the matrix elements up to some global scalar multiple, and since j cannot
be zero if point 0 is not at infinity. He then solved for g and h and got
something that looked like

I don’t really like the j = 1 assumption though since it leads to these
nasty divisions. And we really don’t need it if we think homogeneously. We
can instead write Equation (13.3) as

And just say that the vector [g h j ] is the cross product of the two columns
of the above matrix. This gives us, after a little simplification

Once we have these, it’s a simple matter to get a through f using Equation
(13.2):

Now that we have Mqt, the same simple arithmetic will give us the
mapping from the canonical square to the input points. This will be the
matrix that satisfies:

qMqs = wss
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Invert that (or, better, take its adjoint) and multiply to get our desired net
matrix:

OlynykÕs Improvement
OlynykÕs Improvement

A n even better solution recently came from my colleague Kirk Olynyk
here at Microsoft Research. His basic idea was to use barycentric coor-

dinates, rather than a unit square, as the intermediate system. Barycentric
coordinates represent an arbitrary point in the plane as the weighted sum
of three basis points, for example, the first three of our output points. This
would represent an arbitrary texture coordinate t as

τ0t0 + τ1t1 + τ2t2 = t

with the constraint that the barycentric coordinates sum to one: τ0 + τ1 +
τ2 = 1. Similarly, we can represent an arbitrary input point in barycentric
coordinates as

σ0s0 + σ1s1 + σ2s2 = s

Kirk then related the two barycentric coordinate systems by coming
up with a mapping from to that has the prop-
erty that the barycentric coordinates of all four input points map to the
barycentric coordinates of their respective output points. That is,

(The two points in the fourth mapping above are the barycentric coordi-
nates of the fourth input/output point pair.) To get the desired mapping,
simply multiply each σi componemt of an arbitrary input point by
Then renormalize to a valid barycentric coordinate by dividing by the sum
of the components. You can see that this algorithm leaves the coordinates
of the first three points intact while properly changing those of the fourth
point.

So how do we get the barycentric coordinates of the fourth input/out-
put pair? Start with the matrix formulation of the barycentric coordinates
of an arbitrary point. Here’s the one for output points:
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Note that if τ0 + τ1 + τ2 = 1, this guarantees that the w (homogeneous)
component of t will be 1 also. Anyway, plugging in t = t3 and moving the
matrix over the equal sign gives us

(13.4)

This is nice, but it’s not ideal. A full-on matrix inversion requires
division by the determinant of the matrix. Likewise, the normalization to
unit-sum barycentric coordinates requires division by the sum of the coor-
dinates. Kirk dislikes divisions even more than I do, so in his implementa-
tion he removed them by homogeneously scaling them out symbolically
after the fact. In thinking about this solution, though, I realized that there
is a different way of deriving it that better shows its relation to the
Heckbert solution.

Another Interpretation
Another Interpretation

H eckbert used a unit square as an intermediate coordinate system, and
Olynyk used barycentric coordinates. Let’s look at this problem anew

and try to pick an intermediate coordinate system (call it b) that will mini-
mize our arithmetic as much as possible when we solve for Mbt in the
equation

bMbt = wt

We want four points bi in our new coordinate system that have as
many zeros as possible as components. The four simplest (homogeneous)
points I can imagine are [1 0 0], [0 1 0], [0 0 1], and [1 1 1]. It doesn’t mat-
ter that two of these are points at infinity. All that matters is that no three
of these points are collinear. I show this new two-stage transformation in
Figure 13.3, although it might be a bit confusing (and unnecessary) to try
to make a closed quadrilateral out of the four b points.

The b coordinate system is like “homogeneous barycentric coordi-
nates” (with the restriction relaxed that the sum of the components equals
one) but is further scaled so that the components of the fourth point are
equal.
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So let’s solve for Mbt. Being extremely ecological, I will again recycle
the names a . . . j for the matrix elements and w0 . . . w3 for the (as yet) un-
known homogeneous factors. Our four points generate

(13.5)

We could solve this by doing the same sort of substitutions that we did in
the Heckbert solution, but there’s an easier way. Looking at the top three
rows on each side, we immediately realize that we have Mbt already staring
us in the face; it’s just the first three rows of Equation (13.5). Let’s write it
in factored form:

(13.6)

We only need to find w0, w1, and w2, and we are home free. To get these, we
take the bottom row of Equation (13.5):

and combine it with Equation (13.6) and write

We can hop the UV matrix over the equal sign by inverting it to get
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(13.7)

Comparing Equation (13.7) with Equation (13.4), we can see the
relationship

In other words, our w0 . . . w2 values are just a homogeneous scaling of the
pure barycentric coordinates of the fourth point. Note also that the right-
hand column of Equation (13.5) tells us that

w0 + w1 + w2 = w3 (13.8)

Remember that we can determine the w’s only up to a homogeneous
scale factor, so let’s pick something nice for, say, w3. How about using the
determinant of the matrix we are inverting? This can never be zero if the
three points t0, t1, and t2 aren’t collinear. Letting w3 equal this matrix de-
terminant would pleasantly turn the matrix inverse into a matrix adjoint
and we have

(13.9)

So . . . that’s half of our final answer. Now for the other half, the matrix
Msb. We get the inverse of Msb by doing the same calculation using the four
input coordinate points. First calculate the three homogeneous scale fac-
tors, which I’ll call z, by analogy with Equation (13.9):

(13.10)

And then, by analogy with Equation (13.6):

To arrive at our ultimate goal of Mst, we need the adjoint of Mbs. One
very nice feature of the factored form of the matrix that I’ve written here is
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that it’s arithmetically simpler to adjointify than a general matrix. I’ll write
it out explicitly:

(13.11)

Put ’em all together and we get our gigantic punch line:

Now it’s time to name some of the matrices I’ve been laboriously writ-
ing out for so long (actually, I’ve been cutting and pasting). Up to this
point, I’ve felt that explicitly writing them out has been more informative
since it allows comparisons with other parts of the equation. I will name
the following matrices:

Finally, let’s rewrite our final answer slightly to give a nice comparison
of this technique with (a homogenized version of ) Kirk’s original solution:

(13.12)

The matrix S* takes us from screen space to (homogeneous) bary-
centric coordinates. The w and z diagonal matrices combine to give one
diagonal matrix whose elements are just homogeneous scalings of the

quantities that Kirk used to go from the screen barycentric system to
the texture barycentric system. Matrix T then takes us to texture coordi-
nates. This form is almost the simplest we can do arithmetically. But let’s
not give up yet.

Geometric Interpretations
Geometric Interpretations

A s Equations (13.9) and (13.10) indicate, we need the adjoints of matrices
T and S to calculate the w and z values to plug into Equation (13.12).

The adjoint S* also shows up in Equation (13.12), but we only use T* to
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calculate the w’s. Let’s look at this w calculation, then, to see if there’s some
way we can save ourselves some work. While this investigation is initially
motivated by performance avarice, it will actually point out some geomet-
ric relationships that I think are the most interesting results of this whole
problem. In other words, greed is good.

First, let’s use the definition in Equation (13.9) to explicitly write out
the calculation of w0:

(13.13)

What does this mean? Well, each row of matrix T is a point, one of t0, t1,
or t2. According to the definition of the adjoint, each column of T* is the
cross product of two rows (points) of T. This means that each column of
T* is a homogeneous line. For example, column 0 of T* represents the line
connecting points t1 and t2. The process of multiplying an arbitrary point t
by the matrix T* just takes its dot product with the three lines t1t2, t2t0, and
t0t1. In other words, it measures the distance from the point to the three
lines. That’s the essential meaning of barycentric coordinates. In any
event, we can now rewrite Equation (13.13) as

This common algebraic expression has a standard geometric interpreta-
tion. Thinking of t1, t2, and t3 as 3D vectors, it’s the volume of the
parallelepiped they define. Thinking, however, of the three points as ho-
mogeneous 2D vectors, there’s another interpretation: w0 equals twice the
area of the triangle t3t2t1. We can verify this algebraically by comparing the
definition of w0 from Equation (13.13) with twice the integral under the
three triangle edges:

But there’s another way to calculate triangle areas: as (half) the length
of a cross product. We can rewrite our expression for w0 so that it looks
like a cross product of two vectors along the edges of the triangle. For ex-
ample, taking the third component of the cross product of the vectors

and gives us

Now let’s calculate w1 (which is half the area of triangle t3t0t2)
and w2 (half the area of triangle t3t1t0). We only need one more vector
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difference: . This gives the simplest way I’ve found to calculate all
the w’s:

(13.14)

Again, you can verify algebraically that these expressions equal those
from Equation (13.9), but the geometric arguments make it seem a bit
less magical. Also, you can look at Figure 13.4 for some more geometric
inspiration.

One More Thin Little Mint
One More Thin Little Mint

T here’s one last little bit of juice we can squeeze out of this. This, again,
came from Kirk, but he found it purely algebraically. I’m going to moti-

vate it by an even more interesting geometric observation. It turns out that
there is a magical relationship between the zi values and the bottom row of
S*. So we have to switch gears and start talking, not about U,V,w but about
X,Y,z. I’ll write the analog to Equation (13.14) and, for good measure,
throw in a formula for z3, which is, by analogy with Equation (13.8), the
sum of the first three:

We can now see the missing link: the geometric interpretation of the
value z3. It’s the area of triangle s0s1s2. To see this, look at Figure 13.5 and
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note that z0 plus z2 equals the area of the whole quadrilateral. Now look at
z1. Since its edge vectors sweep clockwise, that area is negative and sub-
tracts from the quadrilateral to get triangle s0s1s2.

One side note: the area of the whole quadrilateral is

This reminds us that the area of the quadrilateral is (twice) the cross prod-
uct of its diagonals (with appropriate care in algebraic sign).

Now let’s take a look at the bottom row of S* (inside Equation
(13.11)). Again, these look like areas of some sort. In fact, they are the ar-
eas of the three triangles connecting the three edges of triangle t0t1t2 with
the origin. (If this isn’t immediately clear, try temporarily imagining point
3 at the origin.) The sum of these areas also equals z3, so we have the fol-
lowing identity, which you can also verify algebraically:

S*20 + S*21 + S*22 = z3

This means that

S*20 + S*21 + S*22 = z0 + z1 + z2

So we can calculate one of the z’s in terms of the others. This can, for ex-
ample, turn the calculation

z0 = X3S*00 + Y3S*10 + S*20

into

z0 = S*20 + S*21 + S*22 − z1 − z2

It turns two multiplications into two additions. This may, or may not, be a
particularly big deal with current processors.
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Code
Code

// Calculate elements of matrix Mst

// From 4 coordinate pairs

// (Ui Vi), (Xi Yi)

U03 = U0-U3;  V03 = V0-V3;

U13 = U1-U3;  V13 = V1-V3;

U23 = U2-U3;  V23 = V2-V3;

w0 = U13*V23 - U23*V13;

w1 = U23*V03 - U03*V23;

w2 = U03*V13 - U13*V03;

Sa00 = Y1-Y2;  Sa10 = X2-X1;

Sa01 = Y2-Y0;  Sa02 = Y0-Y1;

Sa11 = X0-X2;  Sa12 = X1-X0;

Sa20 = X1*Y2 - X2*Y1;

Sa21 = X2*Y0 - X0*Y2;

Sa22 = X0*Y1 - X1*Y0;

z1 = X3*Sa01 + Y3*Sa11 + Sa21;

z2 = X3*Sa02 + Y3*Sa12 + Sa22;

z0 = Sa20+Sa21+Sa22 - z1 - z2;

d0 = w0*z1*z2;

d1 = w1*z2*z0;

d2 = w2*z0*z1;

Sa00*=d0; Sa10*=d0; Sa20*=d0;
Sa01*=d1; Sa11*=d1; Sa21*=d1;
Sa02*=d2; Sa12*=d2; Sa22*=d2;

M00 = Sa00*U0 + Sa01*U1 + Sa02*U2;

M10 = Sa10*U0 + Sa11*U1 + Sa12*U2;

M20 = Sa20*U0 + Sa21*U1 + Sa22*U2;

M01 = Sa01*V0 + Sa01*V1 + Sa02*V2;

M11 = Sa11*V0 + Sa11*V1 + Sa12*V2;

M21 = Sa21*V0 + Sa21*V1 + Sa22*V2;

M02 = Sa00 + Sa01 + Sa02;

M12 = Sa10 + Sa11 + Sa12;

M22 = Sa20 + Sa21 + Sa22;
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Down a Dimension
Down a Dimension

A s a mental exercise, let’s look at this problem in one dimension. Suppose
we want to find a single function relating X and U of the form

In matrix notation, this would be

Here, each input/output pair (Xi and Ui) gives us one row in the expression

Three input/output pairs generate enough rows on the left to make this a
fully determined system. Solving for a . . . d requires the determinants of
four 3×3 matrices. But applying our 2D trick to the 1D problem, we can
get the same result by the calculation

Tediously multiplying this out gives the following:

The patterns in these expressions explicitly show something that we expect
and implicitly assumed: the transformation will come out the same if we
permute the indices of the input/output point pairs.

We will use this 3-point to 3-point transformation to great effect in
the next few chapters.

Down a Dimension 193

0 1 1 2 2 0

0 1 1 2 2 0

1 0 0

1 0 0 1 1

1 1 0 1
0 1

w w U U U U

z z X X X X

a c z w U
b d X X z w U

  = − −   

  = − −   

−     
=     −     

Α Β Α Β
Α Β Α Β

0 0 2 1 1 1 0 2 2 2 1 0

0 1 2 1 0 1 2 0 2 1 2 0 1 0 2

0 2 1 1 0 2 2 1 0

0 1 1 0 1 2 2 1 2 0 0 2

a U X U U X U U U X U U U

b X X U U U X X U U U X X U U U

c X U U X U U X U U

d X X U U X X U U X X U U

= − + − + −

= − + − + −

= − + − + −

= − + − + −

Α Β Α Β Α Β
Α Β Α Β Α Β

Α Β Α Β Α Β
Α Β Α Β Α Β

1 0i i i i

a
b

X X U U
c
d

 
 
  − − =  
 
 

1 1
a c

X w U
b d
 

   =    
 

aX b
U

cX d
+

=
+



Up a Dimension
Up a Dimension

N ow, close your eyes and stretch your mind in the other direction. Imag-
ine input/output pairs in homogeneous 3D space. Each pair, connected

by a 4×4-element matrix multiplication, gives four equations. The fourth
equation gives an expression for wi. Plug it into the other three and rear-
range to get three equations that can be written as three rows of stuff times
a 16-element column of matrix elements a . . . p. Since this has a zero
on the right side, we need one less than 16 equations to solve the homo-
geneous system. Hmm, 16 minus 1 gives 15, and we get three per input/
output pair. That means that we can nail down a 3D homogeneous per-
spective transform with five input/output pairs. The conventional solution
requires a truly excruciating 16 determinants of 15×15 matrices. Opening
your eyes in shock, you discover that this exercise in imagination allowed
me to get the idea across without making the typesetter hate me.

But now we know better how to solve this. The answer is a fairly
straightforward generalization of Equations (13.6) and (13.9) into 4×4
matrices and 4-element vectors like so:

The details and arithmetic optimization tricks are left as an exercise for
you to do (meaning I haven’t gotten around to doing it myself).
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C H A P T E R F O U R T E E N

How Many Different
Rational Parametric Cubic

Curves Are There?
Part I, Inflection Points

J U L Y – A U G U S T 1 9 9 9

I n my never-ending quest to build intuition about the relationship be-
tween algebra and geometry, I have recently turned my attention once

again to cubic curves. The basic question is this: what sorts of shapes can a
given symbolic expression generate? In Chapter 4, “How Many Different
Cubic Curves Are There?” and Chapter 6, “Cubic Curve Update,” of Jim
Blinn’s Corner: Dirty Pixels I asked this question about algebraic cubic
curves of the form

3 2 2 3

2 2

2 2

3

3 3

3 6 3

3 3

0

Ax Bx y Cxy Dy

Ex w Fxyw Gy w

Hxw Jyw

Kw

+ + +

+ + +

+ +
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I am now going to ask the same question about parametric cubic curves of
the form

As an auxiliary question, I want to see which curve shapes can be gen-
erated both parametrically and algebraically. Many people have played
around with this problem1,2, what follows is my own personal take on the
subject. I found out a lot of things that surprised me at first, but when I
thought about them, they became pretty obvious. I hope I can make them
obvious to you, too.

The parametric formula includes cubic Bezier curves, cubic B-spline
curves, and so on, but those curves usually only consider a segment of the
curve between the parameter values 0 and 1. In this chapter, I want to
think about the whole curve as generated by all possible values of T from
minus infinity to plus infinity. This holistic approach is guaranteed to gen-
erate points at infinity for some value of T or other. Therefore, in order to
really understand what’s going on with cubic curves, we must be fluent
with infinity, both geometric and parametric. This means that we will gen-
eralize concepts that use Euclidean coordinates [X Y] into those that use
projective homogeneous coordinates [x y w], and we will generalize the pa-
rameter T to the homogeneous parameter [t s].

Our ultimate goal will be to transform an arbitrary parametric cubic
curve both geometrically and parametrically to match one of a set of ca-
nonical simple algebraic forms. How many such forms are possible? It
turns out that there are exactly three. In order to see this, we will need
some basic tools. The most important of these is the ability to find and cat-
alog the inflection points of a curve. That will be the primary focus of this
chapter.

Inflection Points
Inflection Points

T he main thing that a cubic curve can do, that lower-order curves cannot
do, is have inflection points. What is an inflection point? Suppose you
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were driving a car along on the curve. An inflection
point would be the place where you switch between
“turning right” and “turning left.” Circles do not
have inflection points. Sine curves have lots of them.
We care about inflection points because they’re pre-
served under perspective transformations. So two
curves that differ only by a perspective transformation
should have the same number of inflection points.

Algebraically, an inflection point occurs when the
second derivative of the curve (the acceleration) is not,
at time T, changing the direction of the first derivative
(the tangent). See Figure 14.1. This occurs when the
second derivative temporarily points in the same di-
rection as the first derivative. A nonhomogeneous ex-
pression of this fact is

We don’t really care what alpha is, so it’s better to express our test as

or

This determinant could also be zero, of course, if either the first or second
derivative was itself zero. These locations aren’t actually inflection points,
but they will be useful special points to find, too.

We want to be able to deal fluidly with all possible points, both finite
and infinite, so let’s recast this in terms of homogeneous coordinates. For
the X coordinate, our old friend the chain rule gives us

with similar expressions for Y. We can now write the 2×2 matrix in terms
of homogeneous coordinates. Factoring out a few w’s, we get
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Look at the mess on the second row and imagine what will happen to it as
you take the determinant. You can see that the −2(stuff ) terms will cancel
out. This leaves us with the much prettier

If you multiply out all the terms in this determinant and look at the result,
you’ll see a pattern. Several terms will cancel out and you will be left with
six terms. A little thought and imagination, which I’ll leave in your capable
hands, will show that the inflection point–sensing determinant is equiva-
lent to

(14.1)

Second-Order Curves CanÕt Inflect
I claimed that a circle has no inflection points. More generally, no
conic sections have inflection points. Let’s see why by applying Equation
(14.1) to a canonical second-order curve whose matrix representation
looks like

To get the first and second derivatives of x, y, and w, you only need to
differentiate the T row vector and conclude that

Since the determinant of a product equals the product of the determi-
nants, we have

198 Chapter Fourteen: How Many Different Rational Parametric Cubic Curves Are There? Part I, Inflection Points

( ) ( ) ( ) ( )2

1
2 2

xw xw yw yw
w ww xw xw xw xw yw yw yw yw
w w

− − 
 
 − − − − − − 

� � ��
� �

�� �� � � �� ��� �

2

1
det det

xw xw yw ywX Y
xw xw yw ywwX Y

  − − 
 =  − −   

� � � � ��
�� �� �� �� ����

det det 0
x y w

xw xw yw yw
w x y w

xw xw yw yw
x y w

 
− −   

= =   − −    

� � ��
� ��

�� �� ����
�� ����

2 2 2
2

1 1 1

0 0 0

1
x y w

x y w T T x y w
x y w

 
    =    
  

2
2 2 2

1 1 1

0 0 0

1
2 1 0
2 0 0

x y w T T x y w
x y w T x y w
x y w x y w

    
    

=    
        

� ��
�� ����



All the T ’s canceled out. What does this mean? It means that the
magic determinant is zero only if the coefficient matrix is singular, inde-
pendent of T. A singular coefficient matrix means that the curve is degen-
erate; it’s something like a circle squashed flat into a line segment. In this
case, the tangent and second derivative point in the same direction along
the whole curve. A nonsingular matrix, on the other hand, generates a full-
fledged conic section. The magic determinant is never zero and therefore
conic sections do not have inflection points.

Third-Order Curves Can
Now let’s bump up to third-order curves and see what we can find out.
Here we have

What can we say about the determinant of this quantity? At first, it looks
pretty scary. The final 3×3 matrix will have T-cubed terms on the top
row, T-squared terms on the second row, and T terms on the bottom
row. The determinant of this mess might potentially be sixth order in T.
Eeeuw.

What was nice in the second-order discussion was that we could sepa-
rately evaluate the part containing T and the part containing the polyno-
mial coefficients because the determinant of the product of two matrices
equals the product of their determinants. We can’t take the determinants
of the two matrices here since they aren’t square. But we can do something
similar. To introduce it, I’ll start by dropping down a dimension and exam-
ine the product of a 2×3 matrix and a 3×2 matrix.
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A Useful Identity
A Useful Identity

L et’s look at the determinant of the simpler quantity

This notation makes it easy to think of the rows of the first matrix as two
3-vectors, P and Q, and think of the columns of the second matrix as
two 3-vectors, R and S. The matrix product is then

and the determinant in question is

When I first started playing with this, I multiplied everything out,
took the determinant, and stared at the result for a while. A pattern began
to emerge. The pattern I saw can be neatly summed up in the vector alge-
braic identity:

Upon further thought, I realized that this is just an expression of what is
called the epsilon-delta rule. I expounded on this at length in Chapters 9
and 10, “Uppers and Downers” (Parts I and II) of Jim Blinn’s Corner: Dirty
Pixels. As desired, it allows us to turn the determinant of a matrix product
into the product of two (almost) determinants (if you think of a cross prod-
uct as a close relative of a determinant).

Up a Dimension
Up a Dimension

N ow let’s step up to the more heady world of 3×4 and 4×3 matrices.
There is a 4D version of the epsilon-delta rule that uses a 4D analog to

the cross product. The 4D cross product (which I’ll call “crs4”) takes three
4-vectors and generates a 4-vector that is perpendicular to each of them.
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You calculate the elements of this result by taking four determinants of
three 3×3 matrices as follows:

(14.2)

where

In 3D, the cross product is perpendicular (has zero dot product) with the
two input vectors. Similarly, the 4D cross product satisfies

Note that the crs4 of three column vectors is a row vector. Similarly, the
crs4 of three row vectors will be a column vector.

Let’s give names to each row of the 3×4 matrix and to each column of
the 4×3 matrix. The 4D epsilon-delta rule can be written in this form as

In other words, the determinant of the matrix product is the dot product
of the two 4D cross products. Again, I discussed this identity more fully in
“Uppers and Downers.”
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Application
Application

L et’s see what this tells us about the inflection points on the curve repre-
sented by the coefficient matrix. Our inflection point–finding determi-

nant is

We can now separately evaluate the crs4 of the T matrix to get

(I’ll throw out the homogeneous factor of 2 from here on.) Next, the
crs4 of the coefficient matrix will be just the 4-element row of numbers

from Equation (14.2). We really can’t say more about
their values than that—they depend on what we were given for the coef-
ficient matrix. The net result, then, is that an inflection point exists for
each value of T that satisfies

(14.3)

This is only third order in T rather than sixth order, as we originally
feared. All the higher-order terms have conveniently canceled out.

What does this mean? Since an inflection point lies at the solution of a
cubic polynomial, the inflection point count does all the things that roots
of cubic equations can do. The five possibilities appear in Table 14.1.

Collinear Inflection Points
Collinear Inflection Points

T he epsilon-delta trick also gives us a quickie demonstration of the
slightly surprising fact that, if three inflection points exist, then they

must be collinear, as they are in Figure 14.2.
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Table 14.1 Five different root structures of cubic equations

Three distinct roots.
This means three distinct inflection points.

One distinct and two equal roots.
We’ll see that the two equal roots do not make an
inflection point, but rather a cusp.

One root.
This corresponds to one inflection point.

A triple root.
(Or, if the triple root is at infinity, the cubic
polynomial can look like a nonzero constant.)
This occurs if the cubic curve is really a quadratic
curve in disguise, for example, if the cubic coefficients
are zero: That will mean
that the crs4 of the coefficient matrix will have
D2 = D1 = D0 = 0. Equation (14.3) then boils down
to −D3 = 0 and no inflection points exist.

The polynomial can be identically zero.
This happens if all four of the Di values are zero. This
means that the curve is a first-order curve (a line) or a
zeroth-order curve (a single point) in disguise.

3 3 3 0 0 0 .x y w   =  



Suppose we have three solutions to the inflec-
tion point equation, T0, T1, T2. Then the loca-
tions of the three inflection points I0, I1, I2,
stacked up into a matrix would be

The condition that the three inflection
points are collinear is that the determinant of
the I matrix is zero. Look familiar? It’s just the
same situation as before. The determinant of
the I matrix equals the dot product of the crs4

of the other two. We already know the crs4 of
the coefficient matrix; it’s
What is the crs4 of the matrix of T’s? We could

start taking 3×3 determinants and end up with a big mess of T0’s, T1’s, and
T2’s to various powers, but it turns out we already know the answer. The
crs4 is just a vector that is perpendicular to each row of the T matrix. Since
the Ti’s are solutions to Equation (14.3), we know that

So we can evaluate the I determinant as a 4-vector dot product and find
that it is identically zero:

So the three inflection points are indeed collinear.

The Case of the Missing Inflection Point
The Case of the Missing Inflection Point

T here is one more thing we need to do. Consider the following curve
equation, which happens to be the one that generated Figure 14.2:
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Now take the crs4 of the coefficient matrix and plug it into Equation (14.3)
and you get

(14.4)

Fine. Two roots. What happened to the third inflection point? We can see
three inflection points staring at us in Figure 14.2. Well . . . one of them is
hidden at the parameter value T=∞. This will happen for any curves that
have D0 = 0. How can we avoid missing such points? We handle infinite
parameter values the same way we handle infinite geometric values, with
homogeneous coordinates. Write the parameter T as a 1D homogeneous
coordinate t/s = T so that

Toss out the common homogeneous factor of 1/s3, and our homogeneous
parametric curve definition is

How does this affect our location of inflection points? It just turns Equa-
tion (14.3) into
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In our problem case, Equation (14.4) becomes

The three inflection points are, then, at the homogeneous parameters

The solution with s = 0 represents the inflection point at T = t/s = ∞.

Next Time
Next Time

T he epsilon-delta rule lets us separate the algebra of the various de-
rivatives of the parameters (which doesn’t change from one curve to

another) from the algebra on the polynomial coefficients (which does
change). In the next chapter, armed with these tools, we’ll tackle the prob-
lem of transforming an arbitrary parametric cubic to make its coefficient
matrix have as many zeros as possible. We’ll then look at how many pat-
terns of nonzero elements remain and see what sorts of basic curve shapes
are possible.
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C H A P T E R F I F T E E N

How Many Different
Rational Parametric Cubic

Curves Are There?
Part II, The ÒSameÓ Game

N O V E M B E R – D E C E M B E R 1 9 9 9

O K. Here’s the deal. I’ve been playing with the question in the title on
and off for over a year now. I’m interested in both the answer to the

question and in finding the clearest possible derivation of that answer. My
first efforts were very algebra intensive but had an aura of concreteness
about them. As I played with the question and went through innumerable
drafts of this column, I came up with more and more elegant ways to ward
off the brute-force algebra and make the answer more intuitive without
reams of calculation. In order for these elegant techniques to work, how-
ever, I needed to build up a collection of tools (or lemmas for the mathe-
matically erudite) that themselves took a little time to explain.

The tool that I described in the previous chapter (the use of a particu-
lar matrix identity, which I will review here) popped up just before I
started to write. I had to scrap my original idea for that chapter and rewrite
it to describe this new tool. Using this tool to answer our big question has
required major surgery to what you are now seeing in the current chapter.

RCM C=
~



I have already given you the answer to the big question: three. But deriv-
ing that answer in a clear and obvious manner is still a little ways away. But
that’s OK. The reason we are doing this is really not so much to answer the
question as to build our intuition about the algebraic formulas and the ge-
ometry that they represent. Let’s see, isn’t there a phrase that encapsulates
this idea? Oh yes: The journey is the reward.

Definition
Definition

S o, let’s reiterate what we are dealing with: parametric cubic curves de-
fined by the formula

(15.1)

We are interested in all points generated by this equation, for all values
of T from −∞ to +∞. Infinite parameter values are easier to manipulate if
we use a homogeneous parameterization, something like expressing the
parameter in 1D homogeneous coordinates. I will denote the homoge-
neous parameter coordinates as [t,s], where T = t/s. In terms of the homo-
geneous parameterization, the curve equation is

(15.2)

I’ll bounce back and forth between the more familiar nonhomogeneous
parameter T and homogeneous parameter representation [t,s] as clarity
dictates.

According to the homogeneous convention, any scalar multiple of a
[t,s] coordinate represents the same parametric point, and will generate the
same geometric point. To generate the whole curve, we must trace out a
curve in [t,s] space that looks roughly semicircular around the origin. Why
go only halfway around the origin? Well, if the curve starts at [t0,s0] and
ends at [−t0,−s0], it will have returned to its geometric starting point. (If it
started at [x0 y0 w0], it will now be at [−x0 −y0 −w0].) If you went around
the parametric origin through a whole circle, you would trace out the
curve twice.
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The matrix of coefficients contains all the information about the
curve, so I will give it a name:

ÒDifferentÓ Means Not the Same
ÒDifferentÓ Means Not the Same

N ext, let’s concretize what I mean by “different curves” by turning the
question around and defining what makes two curves the “same.” We

will then sort all the parametric cubic curves into groups of the same
curves, and see how many groups we have.

The Same via Transformation
In projective geometry, we are interested in properties of shapes that re-
main constant even if the shape is subjected to a perspective transforma-
tion. The sorts of geometric properties that remain unchanged by such a
transformation include intersections, tangency, and inflection points.

Algebraically, we typically express a perspective transformation as a
homogeneous matrix multiplication:

The coefficient matrix transforms in the same way:

Accordingly, if we can find a nonsingular transformation matrix M that
changes one coefficient matrix C into another one we will say that the
curves generated by those matrices are the same.

The Same via Reparametrization
There’s another algebraic transformation we can perform on the curve
equation that doesn’t change the curve shape at all—we can change the
parameterization. This change is possible because we’re interested in the
whole curve generated by the infinite parameter range −∞ ≤ T ≤ +∞.
For example, if we define
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and run from−∞ to+∞, we’ll also generate all T ’s from−∞ to+∞. To
see how this affects the algebra of the coefficient matrix, we calculate

and write these equations in matrix form:

Plugging this into Equation (15.1), we can see that

Evaluating each of these for all values of T and all values of will gen-
erate exactly the same set of points. In other words, the coefficient
matrices

generate exactly the same curve without any geometric distortions.
When we go to the homogeneous parameterization, we can use an

even more general transformation, a 1D perspective (rational linear) trans-
form of the form

(15.3)

A plot of this type of function looks like either a line or a hyperbola. Note
that the function is still a one-to-one mapping of to T (including infinite
values) and that it’s monotonic since the derivative has a con-
stant sign.
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Recasting this function in homogeneous parameter space, we get

Writing this as a matrix gives

In other words, the reparametrization is a simple linear transformation
of [t,s] space. This is OK as long as the transformation is nonsingular,
which is as long as ad − bc ≠ 0.

To see how this reparametrization affects the form of the coefficient
matrix, we calculate the following:

Expand this mess all out and write it as a matrix product, and we get

(15.4)

where

Now we combine Equations (15.2) and (15.4) to get

We say that any coefficient matrix C generates the same curve as the ma-
trix RC for any R constructed with any values a,b,c,d such that ad− bc≠ 0.

ÒDifferentÓ Means Not the Same 211

ˆ ˆ
a b

t s t s
c d
 

   =    
 

3 3

2 2

2 2

3 3

ˆ ˆ

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ

ˆ ˆ

t at cs

t s at cs bt cs

ts at cs bt cs

s bt cs

= +

= + +

= + +

= +

Α Β
Α Β Α Β
Α Β Α Β

Α Β

3 2 2 3 3 2 2 3ˆ ˆ ˆˆ ˆ ˆt t s ts s t t s ts s   =   R

( ) ( )

( ) ( )

3 2 2 3

2 2

2 2

3 2 2 3

3 2 2 3
3 2 2 3

a a b ab b
a c a bc ad b bc ad b d
ac c bc ad d bc ad bd
c c d cd d

 
 

+ + ≡ + + −
 
  

R

3 2 2 3ˆ ˆ ˆˆ ˆ ˆx y w t t s ts s   =   RC

ˆ
ˆ ˆˆ

ˆ ˆ ˆ
ˆ

t
a ct at css

ts bt dsb d
s

+ +
= =

+
+



The Game
The Game

S o here’s what we’re going to do. We’re going to develop an algorithm
that takes an arbitrary coefficient matrix C and transforms it via a

(nonsingular) reparametrization matrix R and a (nonsingular) geometric
transformation matrix M to turn it into a canonical form:

We’ll devise this canonical form to be as simple as possible, with lots of ze-
ros and ones as elements. It will turn out that there are six possible result-
ing types of matrices, three that represent “true” cubics, and three that
come from lower-order curves disguised as cubics.

The Canonical Geometric Transform
The Canonical Geometric Transform

A s a warm-up exercise, let’s start with an arbitrary second-order curve
and simplify it via geometric transformations. We start with

Transforming by the matrix M gives

We want to find a matrix M that gives us as simple a product as possi-
ble with the coefficient matrix. Gee, what could that be? How about sim-
ply picking M as the inverse of the coefficient matrix. You would get

Any second-order curve with a nonsingular coefficient matrix is the
“same” as this canonical curve, which happens to be a parabola. All conic
sections are transformations of this canonical parabola. This means that,
according to the rules of our game, there is exactly one second-order curve.
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There is a bit of a gotcha though. We need to worry about the case
where the coefficient matrix is singular. As it happens, this turns out to be
linear curve (OK, a line) in disguise, not a true second-order curve. I’ll deal
with such cases in a separate column.

Now let’s see what happens when we try to simplify a cubic in a similar
manner. We want to find a transformation M that will simplify the coef-
ficient matrix

We could shave off the top three rows of the coefficient matrix and
transform by the inverse of this 3×3 matrix. As long as this matrix is
nonsingular, we’ll get

So we’ve boiled our cubic curve down to what, at first, looks like a
three-parameter class of curves, depending on what we get for To
understand what to do next, we must remember our tool from the last
chapter.

Inflection Points Revisited
Inflection Points Revisited

I n the previous chapter, we showed that the inflection points of a cubic
curve are at parameter values that are the solutions to a homogeneous

cubic polynomial:

(15.5)

where the coefficients Di are the determinants of the various 3×3 sub-
matrices of the coefficient matrix:
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(15.6)

Notice that the matrix defining D0 is the one we used for the canonical
transform above.

Back to the Game
Back to the Game

N ow we can relate the values of to the values of Di. We start by
noting that each row of the coefficient matrix is a homogeneous point

in the plane. I’ll give names to these row vectors as follows (I include the
ellipses to emphasize that the points are row vectors):

It’s interesting to note that the top and bottom rows
are points on the curve itself. p0 is the point at the ho-
mogeneous parameter value [0,1] (or at T = 0 in the
nonhomogeneous formulation), and p3 is the point at
the homogeneous parameter value [1,0] (or at T = ∞ in
the nonhomogeneous formulation). Furthermore, the
line through p0 and p1 is tangent to the curve at p0. And
the line through p2 and p3 is tangent to the curve at p3

(see Figure 15.1). Anyway, we can now rewrite the
definition of the elements of the D vector from Equa-
tion (15.6) as
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And the geometric transformation matrix we were using as our canonical
transformation is simply

We can evaluate the matrix inverse from the cross products of the vari-
ous row vectors. Each cross product gives a column vector, and the in-
verse is

As long as this matrix is nonsingular (that is, the determinant, D0, is non-
zero), we can see that our canonical transformation will generate

This, then, gives the meaning of the bottom row of the candidate ca-
nonical matrix. If, however, the original curve gave us a value of D0 = 0,
this is not a good choice for a canonical transformation. All is not lost,
however. We can pick a transformation matrix as the inverse of any of the
other subsets of three of the four rows and get the following possibilities
for canonical coefficient matrices:
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Which of these is best to choose will depend on what values we have for
the Di’s.

We have therefore been able to recast the question “How many differ-
ent rational parametric cubic curves are there?” as “How many different
homogeneous cubic polynomials are there?” We’ve gone from needing to
understand the 12 numbers in the coefficient matrix to needing to under-
stand the 4 coefficients in a homogeneous cubic polynomial.

How Does the Game Affect D?
How Does the Game Affect D?

T he D vector determines where the inflection points are. The reason that
inflection points are interesting is that the number of them will not

change due to perspective transformations or due to reparametrization.
How does this fact show up in the algebra of transformation that we just
defined?

Geometric
When we transform C by a nonsingular geometric transformation M to
the new matrix what will be the elements of the D vector for this
new coefficient matrix? Remember that the determinant of a product is
the product of the determinants. So the determinant of any three rows of

will equal the determinant of the same three rows of C times the deter-
minant of M. Applying this to each 3×3 submatrix of C and gives
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In other words, a geometric transformation of the curve will just apply a
uniform homogeneous scale of detM to the D vector. It will not change
the location of the roots of the D polynomial, which are the parameter val-
ues at the inflection points. This pretty much makes sense.

Reparametrization
Reparametrization does not change the geometry of the curve at all, so
inflection points stay put geometrically, while they may move around
parametrically. To see where they move to, let’s rewrite Equation (15.5) as

If we reparametrize this using Equation (15.4), we get

In other words, the coefficients of the reparametrized D are

If you plot the function

and consider what reparametrization does to it, you can see that it is just a
rotation and shear of the function in parameter space. It mangles the
shape, but one thing it does not do is to change the number and multiplic-
ity of roots of the polynomial.
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Winning the Game
Winning the Game

T he next order of business is to immerse ourselves in what types of homo-
geneous cubic polynomials exist under reparametrization. Our goal will

be to pick a reparametrization matrix that makes the new values as sim-
ple as possible. We’ll tackle that in the next millennium. (This was written
just before New Year’s Day 2000. . . . Oh, I really crack myself up.)
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C H A P T E R S I X T E E N

How Many Different
Rational Parametric Cubic

Curves AreThere?
Part III, The Catalog

M A R C H – A P R I L 2 0 0 0

O ur journey to the answer to the question posed in the title is nearing
an end. As I have played around with the ideas in these three chapters,

I’ve begun to feel like I’m experiencing Zeno’s paradox—I keep find-
ing subproblems and digressions, each one getting us another halfway
to the solution. I’m going to restrain myself a bit this time, though,
and power through to a final answer. To do this, I will have to defer
some interesting discussions about homogeneous polynomials and their
properties. Although this will get us an answer, our purpose here is really
insight rather than answers to specific questions. I will therefore re-
serve the right to go back and revisit these critters in more detail in a later
book.



Our Story So Far
Our Story So Far

W e are interested in rational parametric cubic curves defined by

I’ll name the matrix of polynomial coefficients C:

We’re interested in all points on the curve generated by all values of
the parameter,−∞≤ Τ≤+∞. Dealing with infinity invites homogeneous
representations, so I’ll express the parameter as the homogeneous coordi-
nates (t,s), where T = t/s. The curve equation is then

We can generate all points on the curve by plugging in values of (t,s) along
some curve in (t,s) space, for example, the semicircle

We only need half a circle because the parameter values
generate the same homogeneous point as the parameter (t,s).

Think Different
We are interested in finding out how many essentially different shapes this
equation can make. Chapter 15 more precisely defined “different” in terms
of what makes two curves the “same.” We consider two curves the same if
they are merely geometric transformations of each other via some 3×3
homogeneous transformation matrix M (perhaps including perspective).
Additionally, we consider two curves the same if one is simply a repara-
metrization of the other. The particular reparametrization we want to use
is a simple linear transformation of the homogeneous parameters:
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Note that I’m actually defining the inverse of the matrix that trans-
forms to This makes the expression of Equation (16.1) easier.
Think of this transformation as a 1D homogeneous (1DH) version of
the traditional geometric transformation used in computer graphics. It
includes translations and scalings of T = t/s as well as a perspective trans-
formation. As long as the matrix is nonsingular (ad− bc≠ 0), the transfor-
mation will be one to one, and all the points generated by all the possible
ratios of will also be generated by all possible ratios of What is
the algebraic effect of this on the coefficient matrix? As described in Chap-
ter 15, this reparametrization does not change the algebraic form of the
curve since we can write the relation between the various powers of
and of as

(16.1)

where

The coefficient matrix of the reparametrized curve is then
These two coefficient matrices generate the same curve—they just have
their parameter values distributed differently.

So, in sum, two coefficient matrices generate the same curve if it’s
possible to find a nonsingular reparametrization matrix R and nonsingular
geometric transformation M such that

Our job now is, given a matrix C, to be able to find R and M that will
make into one of a small set of canonical curves that are as algebraically
simple as possible.

Same-ing Tools
In Chapter 14, we discovered that we can find the inflection points of this
curve at parameter values (t,s) that are at the zeros of the homogeneous
polynomial:

D0t
3 − 3D1t

2s + 3D2ts
2 − D3s

3 = 0
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where the coefficients Di are the determinants of the various 3×3 sub-
matrices of C:

In Chapter 15, we discovered that any two curves that had the same
inflection point polynomial—that is, any two whose coefficient matrices
generated the same Di values (up to a scale)—were just geometric transfor-
mations of each other (and were therefore the same shape). In particular,
we showed that, if the value of D1 for a curve is nonzero, we could trans-
form the curve by the inverse of the matrix that defines D1 and get

(16.2)

Or if D3 ≠ 0, we could transform via the inverse of the D3 matrix and get

(16.3)

Yay. Lots of zeros and ones. Now all we need to do is to figure out how
to reparametrize the inflection point polynomial to make its coefficients Di

into zeros and ones. One basic tool will be an equation from Chapter 15
that shows how reparametrization affects the Di values:
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Our other basic tool comes from a somewhat offhand remark in Chap-
ter 13.

Inferring Transforms
I n Chapter 13 I showed how to generate the elements of a homogeneous

transformation given a set of desired inputs and outputs. This technique
is usually used to determine 2DH transformations from four input/output
point pairs. But at the end of the chapter, I mentioned that a 1DH trans-
formation could be derived from any three distinct input/output pairs.
Translated into our notation, this means that we can find a 2×2 matrix to
transform any three given values into any three desired values
according to the equation

(The three homogeneous scales wi are also calculated as a side effect of the
matrix derivation. We don’t have to specify them.) In a nutshell, we calcu-
late the matrix by first finding the intermediate matrices:

Then the desired matrix will be the adjoint of times N:

We now use this tool to move the roots of arbitrary polynomials into arith-
metically nice canonical positions.

Types of Homogeneous Cubic Polynomials
Types of Homogeneous Cubic Polynomials

A homogeneous cubic polynomial has three roots: and
The polynomial is then
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Our technique for inferring transformations allows us to reparame-
trize the polynomial to place these three roots at any three canonical loca-
tions we wish. In what follows, I’ll pick canonical locations that I’ve
verified lead to nicer arithmetic later on. We’re only interested in cases
where the final polynomial coefficients are real, so this boils down to five
special cases:

1. Three distinct real roots. Transform them to the equally radially spaced
canonical positions This generates
the canonical three-root polynomial

2. One simple root and one double root. Transform the simple root to
and the double root to But what do we do for the third input/
output pair? It turns out that it doesn’t matter. As long as we pick any
third input value that is distinct from the original roots and any output
value that is distinct from and we will get some constant
factor times the polynomial With some foresight, I will choose
to scale this canonical polynomial to be

3. One real root and two complex conjugate roots. Transform the real root to
and the complex conjugate roots to Feel

free to entertain yourself by showing that two complex conjugate
input/output pairs will still result in real values for the 2×2 matrix.
The canonical polynomial is

4. One triple root. Transform it to Again, it doesn’t matter what
choices we make for the other two input/output pairs as long as they
are distinct. We’ll get the canonical polynomial

5. The zero polynomial. This may appear trivial, but it does correspond to
a valid set of coefficient values. We will, in fact, encounter it later on in
some perfectly reasonable situations.

Any homogeneous cubic polynomial (in particular, our inflection
point polynomial) can be transformed into exactly one of these five types.
So what are the Di values for each canonical inflection point polynomial?
In the final column of Table 16.1, I’ve lined up the inflection point coef-
ficients with the possible canonical coefficients. We see that D0 = D2 = 0,
and the D1 and D3 values are as listed.

Generating the Catalog
Generating the Catalog

N ow let’s put this all together. We will assume we are given a cubic co-
efficient matrix and want the steps necessary to transform it, both

parametrically and geometrically, to a standard form with lots of zeros, and
a few ones in the coefficient matrix. We’ll then eagerly see what those ma-
trices are.
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1. Generate the D vector. This just involves taking the four 3×3 deter-
minants of the submatrices of the original polynomial coefficients.

2. Figure out the reparametrization of the resulting cubic polynomial
that puts it into one of the five canonical forms of Table 16.1. This, of
course, involves finding the roots of the cubic. This is a perfectly do-
able project but I won’t get into the mechanics of it here.

3. Apply the same reparametrization to the original polynomial coef-
ficient matrix. We are now guaranteed that the various 3×3 subde-
terminants of this reparametrized coefficient matrix will have values
implied by the fourth column of Table 16.1.

4. We now apply the geometric transformation. For cases 1, 2, and 3, we
have D1 ≠ 0, so we can use the transformation from Equation (16.2).
For case 4, we use Equation (16.3). The final results appear in Table
16.2.

False Cubics
Let’s take a closer look at case 4. The coefficient matrix will generate the
following curve points:
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Table 16.1 Catalog of possible homogeneous cubic polynomials

Case Real roots
Canonical
polynomial

Canonical
coefficient vector

1

2 Simple: , Double:

3

4 Triple: s3

5 Infinitely many 0

0 1 2 3
ˆ ˆ ˆ ˆ3 3D D D D− −  

( )1, 0 , 1, 3 , 1, 3− − −Χ ∆ Χ ∆ ( )2 2ˆ ˆ ˆ3t s s− 0 3 0 1 − 

( )1, 0− ( )0,1 2ˆ ˆ3t s 0 3 0 0  

( )1, 0− ( )2 2ˆ ˆ ˆ3t s s+ 0 3 0 1  

( )1, 0− 0 0 0 1  

0 0 0 0  

3 2 2 3

2 2

0 0 0
1 0 0
0 1 0
0 0 1

x y w t t s ts s

s t ts s

 
 
    =    
 
 

 =  
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Table 16.2 The catalog of canonical cubic curves

Case D1 D3

Transformation
equation
number

Final
coefficient

matrix Description Picture

1 −1 1 (16.2) Serpentine

2 −1 0 (16.2) Cusp

3 −1 −1 (16.2) Loop

4 0 1 (16.3) Quadratic

5 0 0 ?? Line

Point

1 0 0
0 1 0
1 0 0
0 0 1

 
 
 
 
 
 

1 0 0
0 1 0
0 0 0
0 0 1

 
 
 
 
 
 

1 0 0
0 1 0
1 0 0

0 0 1

 
 
 
 −
 
 

0 0 0
1 0 0
0 1 0
0 0 1

 
 
 
 
 
 

0 0 0
0 0 0
0 1 0
0 0 1

 
 
 
 
 
 

0 0 0
0 0 0
0 0 0
0 0 1

 
 
 
 
 
 



In other words, the curve is not really a cubic curve; it’s a quadratic curve
masquerading as a cubic by homogeneously scaling itself by a factor of s.
Not fair. This particular coefficient matrix above will generate a parabola
. . . almost. The parabola will be tangent to the point at infinity on the
x axis [1,0,0], and that point of tangency happens at the parameter value
s = 0. Under its cubic disguise, however, that parameter value generates
the nonexistent point [0,0,0]. So the quadratic pays for its sins by having
one of its points lopped off.

Case 5 is even worse. All of the Di’s are zero. This doesn’t mean, how-
ever, that the curve totally disappears. It’s possible to have a perfectly rea-
sonable coefficient matrix that generates Di = 0. The simplest example is

Varying (t,s) will trace out the y axis, so this time we have a linear function
masquerading as a cubic curve. This line, too, is missing a point; this time
it’s the point at infinity on the y axis.

Finally, we can have another situation for case 5:

This just generates a single point (the origin) for all values of (t,s) except
(t,0).

These last three situations—quadratic, linear, and point curves mas-
querading as cubics—will be the subject of more investigation in a future
article. For now, we will not consider them as true cubic curves. This
leaves us with the three curves for cases 1, 2, and 3.

The Number of the Counting Shall Be 3
Our technique for cataloging arbitrary rational cubic curves into equiva-
lence classes took an arbitrary coefficient matrix C and found a transfor-
mation matrix M and a reparametrization matrix R that converted it into
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one of six simple standard forms. Three of these are
real cubic curves and three are lower-order curves.
Some interesting points follow:
■ Each of the canonical forms is a nonrational curve

since the w value is constant at 1. In other words, all
rational curves are just perspective transformations
of some nonrational curve.

■ Any rational parametric curve (whether Bezier, B-
spline, NURBS, or whatever) is a snippet out of
one of these three basic shapes, appropriately re-
parametrized and perspectively transformed. This
reminds me of the story of the guy who copyrighted
the note Middle C and then claimed that all com-
positions were merely transpositions and repeti-

tions of his basic melody.

Better Pictures
The canonical pictures in Table 16.2 do not really show off the curves
to best advantage. The problem is that each of the true cubics has an
inflection point at the parameter value (1,0) and with geometric coordi-
nates [1 0 0] (the point at infinity on the x axis). This means that the
inflection point is at infinity both geometrically and parametrically. To see
all interesting parts of the curve locally, we must do a geometric perspec-
tive transform to get the inflection point at [1 0 0] to become a local point.
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Figure 16.1 The three canonical parametric
cubic curves transformed for best viewing:
serpentine (a), cusp (b), and loop (c)



And when we draw the curve, it will be easier if it is reparametrized so that
the (now local) inflection point is not at the parameter value T = ∞. Ma-
trices to do this and best show off the shape are different for each of the
three cubic types. Figure 16.1 shows the results of hand-tuning nice views
of each curve. Note that the three inflection points of the serpentine are
on the x axis, and the single inflection point of the cusp and loop is also on
the x axis.
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Chapter Seventeen: A Bright, Shiny Future

C H A P T E R S E V E N T E E N

A Bright, Shiny Future
J A N U A R Y 2 0 0 0

For the January 2000 issue of CG&QA , I was invited, along with
other industry notables, to describe my view of the world of 2020. Here’s
what I want/hope to happen.

W hen I was about 15 years old, I performed a calculation. I said to my-
self, “Let’s see, I was born in 1949. That means that in the year 2000, I

will be 51 years old. Most people live that long. Therefore I will probably
live to see the year 2000.” What did I expect to see? Flat-screen color
TVs? Yes. Colonies on the moon and Mars? Sure. Personal helicopter
backpacks? Why not? Computers? Huh?—I didn’t even know what com-
puters were. Maybe I expected personal robot slaves, but not computers.
But I knew what the future was going to look like. It was going to look like
the 1964 New York World’s Fair.

Now that I’m 50 years old, I can perform a similar calculation. In the
year 2020, I will be 71. Many people live that long. I’ll probably live to see
the year 2020. What do I expect to see? What do I want to see?

What Will Probably Happen
What Will Probably Happen

W e know from viewing past predictions that short-term predictions tend
to be overly optimistic, and long-term predictions tend to be overly

conservative. Here are some short-term predictions that I feel pretty sure
of, mainly because most of them are almost here now. They will surely be
done deals in 20 years.

2020



Computers
Computers will be faster. Computers will be cheaper. Computers will have
more memory. Computers will still crash.

If present trends continue, computer speeds and main memory sizes
will increase by several thousandfold, and nonvolatile storage will increase
by several hundred-thousandfold. Small, incredibly cheap, special-purpose
computers will abound, all communicating with each other. Ivan Suther-
land’s “Wheel of Reincarnation” will have gone through another couple
of turns, and the main CPU will be doing the graphics again instead of
special-purpose processors. Everyone will finally agree that computers are
finally fast enough and storage is large enough to satisfy them.

Display Technologies
CRTs will be gone. We finally really will have cheap flat-panel displays
that consume very little power and are lightweight. We’ll have small, por-
table display pads connected to our base CPU or network via wireless
LAN technology. Their resolution will be about the same as today’s laser
printers. We’ll watch TV on these devices, do e-mail and voicemail, and
read books on them. We will still use large-screen displays for group view-
ing of movies, but head-mounted displays will be lightweight and com-
mon. Direct neural inputs to the brain will be the hot new experimental
technology. I can already hear kids saying, “But Dad, all the kids have
Neural Internet Receivers.”

Applications
Data rates and storage capacity for large quantities of video and movies
will be considered trivial. Bandwidth bottlenecks will diminish but not dis-
appear. Consider the bandwidth hierarchy:

■ Bus speed
■ Wired LAN speed
■ Wireless LAN speed
■ Wired WAN speed
■ Wireless WAN speed

Each item will advance to the current speeds of the next level or two up.
This means that we’ll still need to compress file sizes to communicate
practically with the next level down in the hierarchy.

The communication between small computers will make the prolifer-
ation of remote controls obsolete. We’ll be able to control everything
from any display or terminal device in the house. These devices will be
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colorful—no more black-on-black buttons that are impossible to see while
watching TV.

Movies will not be distributed as a sequence of images. Instead they
will be distributed as the database necessary to construct the images on the
fly. What we now think of as computer-rendering techniques will be used
as a playback decompression technique. Newly produced movies/videos
will be generated directly in this format. Older movies/videos will be
stored in this format after some processing to re-extract the layering of the
images. (This is basically the intent of MPEG 4; we will probably be up to
MPEG 8 or 9 by then.)

The Web will have long since taken over television as the primary
communications medium of the world. Much of the world’s commerce
will be done on the Web. Shipping companies will thrive.

What Do I Want to Happen?
What Do I Want to Happen?

I want 3D user interfaces and applications to be common. I want this be-
cause I think that developing 3D algorithms is fun, and I want there to be

enough of a market for them to support their development.
I want to have a sophisticated model of the human visual system that

can predict when imaging errors are below the threshold of detectability
of the eye. Only then can we properly evaluate tradeoffs in our rendering
techniques. We can answer questions like, How much display resolution is
really enough? How many bits of precision do you need in pixel-process-
ing arithmetic? And, more abstractly, How realistic do you need to be in
your rendering?

I want all legacy idiocies like interlaced video and linear arithmetic on
gamma-corrected pixels to go away. In fact, I want pixels to go away as an
image archiving and processing method. An image is actually a continuous
function. Converting it to pixels requires choosing a resolution and throw-
ing away information beyond that resolution. Choosing a lower resolution
generates fewer pixels to store, but throws away more information. When
you really think about it, representing an image as pixels is just a bad image
compression technique. Better techniques built on discrete cosine trans-
forms or wavelets are attempts to find better sets of image “atoms.” Build-
ing pictures out of these atoms is more representative of actual images.
However, we need still better picture atoms. Converting images to pixels
should be a last-minute operation, for display purposes only.

I want special-purpose graphics processors to go away. Programming
with these things is just too @#$# hard. I want main CPUs to be fast
enough to make the images we want. Special-purpose processors always
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choke off real algorithmic creativity as they make us try to shoehorn new
algorithms into a design model often several years old.

I want computer games (like my favorites Sam and Max Hit the Road,
Day of the Tentacle, Monkey Island, and The Fool’s Errand) to be ar-
chived and downloadable in a format that I will be able to play on future
hardware rather than have them disappear from sight because they run on
obsolete computers and game consoles. Currently, computer game life-
time is limited by the lifetime of the hardware they run on. And we can’t
rely on simply keeping a copy of old hardware; these things break.

I want image digitizers to be able to extract all the information from
an image. This involves figuring out the maximum spatial resolution and
the maximum intensity resolution that a given image actually contains.
This would be the limit beyond which the image is just noise. Digitizing
devices and software should be able to determine this empirically from any
input image.

I want a massive worldwide project to be started to digitize and archive
all existing media (books, photographs, TV, and movies) and make them
available. I want copyright issues to be addressed so that producers of con-
tent get rewarded for their efforts while repurposing of these assets is not a
major legal risk. I want all of this because I believe that, in the future, any
media not available on the Web will effectively cease to exist.

I want all this stuff to work. Not crash a lot, and not destroy data.
And in the future, I want to know everything there is to know about

cubic curves.

Why Do I Want This to Happen?
Why Do I Want This to Happen?

A s a producer of images, mathematical articles, and animations, I want to
have better and better tools to use. I want to be able to create mathe-

matics and physics animations as interactive textbooks and distribute them
on the future Web. I want to develop new rendering, lighting, and geo-
metric algorithms. And I want an audience for them.

But I am also a consumer of images. And it seems like I am currently
accumulating media faster than I am consuming it. So, I want a digitized
version of all my books, music, photographs, and videos—both for space
considerations and for easy accessibility. I want to be able to download any
other books or research reports, old or new, from the Web. I want to have
immediate digital access to any old movie or television series that I want to
see—all for a reasonable fee.
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Since I hate to travel, I want to be able to travel in virtual reality. I
want to be able to see interesting places and events at realistic resolution
and time delay without the bother of actually going to them. I want to ex-
perience the canyons of Mars and the rings of Saturn from my home.

If space travel is inconvenient, time travel is even worse. I want to ex-
perience fun past events like, for example, historical world’s fairs. One of
the things that fascinates me about world’s fairs is that they have always
had a positive view of the future. I’m tired of the dystopian views currently
common in predictions of the future. (How come everything in the future
has to be rusty?) Architecture in world’s fairs was clean and monumental
like the grandiose art deco pavilions of the 1939 New York fair. This fair
pioneered the concept of the dark ride (an early form of virtual reality),
and gave viewers a look at the future world of 1964 containing suburbs, su-
perhighways, automatic dishwashers, fluorescent lights, and voice-actu-
ated robots. You can visit it virtually at

websyte.com/alan/nywf.htm
xroads.virginia.edu/g/1930s/DISPLAY/39wf/frame.htm
www.archive.org/movies/index.html

Then there is my favorite building, the Atomium, a 330-foot-tall building
in the shape of a molecule from the 1958 Brussels fair. I have always won-
dered what it looked like inside this building. Now thanks to the Web, I’ve
discovered that it still exists and have virtually seen inside it via the site

www.atomium.be

In 1962, the fair was in Seattle. I visit that site regularly in real life, since I
live nearby. And in 1964, the fair in New York demonstrated touch-tone
phones, videophones, fusion power, underwater cities, cultivated deserts,
audio animatronics, and multimedia shows (back when multimedia meant
lots of slide projectors chunking away simultaneously). It also exhibited a
model of an amazing machine that crunches through the jungle laying
down a freeway in its wake. (Some of these ideas may appear inadvisable
in retrospect.) I actually visited this one in real life, but I can go back virtu-
ally at

members.aol.com/bbqprod/bbqprod.html
naid.sppsr.ucla.edu/ny64fair/

I’ve visited these fairs virtually and through my collection of guidebooks,
souvenir books, movie film, and stereo View-Master slides. But it’s not
enough. I want them digitized and fed to 3D analysis programs to recon-
struct 3D digital models. I want the whole experience of seeing a bright,
shining future from the point of view of 1939 or 1964 . . . or 2000.
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A Guarantee
A Guarantee

T here’s one prediction I am sure of. In the future, people’s predictions of
their own future will be no more accurate than ours. In 20 years, things

will be vastly different than we expect. But we can do more than just pre-
dict the future; we can create it. And that’s good because I want the future
to be beautiful again.
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Chapter Eighteen: Optimizing C++ Vector Expressions

C H A P T E R E I G H T E E N

Optimizing C++
Vector Expressions

J U L Y – A U G U S T 2 0 0 0

R ecently, I’ve been attempting to delay brain fossilization by studying all
the nifty new programming techniques that have been invented since I

was in school. I started with C++ and Object-Oriented programming.
They say there’s no zealot like a convert, and I’ve become something of
a C++ weenie. I am now progressing through generic programming,
aspect-oriented programming, partial evaluation, and generative pro-
gramming. I find all this enormously exciting in theory, but what I’m really
interested in is whether all these tricks work in the real world of graphics
programming. My answer so far is yes, but. . . . To see “but what?” I’ll start
by defining one of the problems I want to solve.

The Goal
The Goal

F or all my life, I’ve wanted to have a programming language that defined
Vectors and arithmetic between them, so I could say things like

Vector A,B,C;

Vector D = A + 3*(B+C);

Now C++ weeniness allows me to do this. But perhaps not too sur-
prisingly, it turns out there are various pitfalls in doing this well. This
chapter will address one of these pitfalls: the speed of execution of vector

template<class A, class B>

inline const

Sum<P<A>,P<B> >operator+(const A& a,

const B& b)

{return Sum<P<A>,P<B> > (a,b);}



arithmetic. The conventional approach turns out to be somewhat slow, but
there is a very tricky technique that can make vector arithmetic very fast.
It’s inspired by the work of Todd Veldhuizen1 and uses the C++ template
mechanism in rather bizarre and unexpected ways. I have to admit that it
has taken me quite some time to understand this myself. I will now at-
tempt to pass that understanding on to you.

For clarity of exposition, I will make some simplifications that would
not be present in production code.

■ I’ll use rather terse names for classes, variables, and templates to make
the sample code more Spartan.

■ I’ll just deal with vector addition and scalar products. Vector subtrac-
tion, scalar division, and unary minus will be easy for you to add as
homework. The vectors will contain simple floats—you can add fur-
ther templatization yourself to handle other data types.

■ In the program fragments, I will make symbolic names boldface when
they are first defined. This will make it visually easier for you to wade
through the syntactic clutter of type declarations and so on, and see
the structure of the code.

The Basic Vector Class
The Basic Vector Class

T o start out, here’s a basic vector class to construct and access the ele-
ments of a 3D vector. I will assume that these definitions are included in

all later variants of the Vector class.

class Vector {

float v[3];

public:

Vector() {;}

Vector(float d0,float d1,float d2)

{v[0]=d0; v[1]=d1; v[2]=d2;}
float operator[](int i) const

{return v[i];}

float& operator[](int i)

{return v[i];}

...additional stuff...

};
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Version 1a: The Recommended Arithmetic
Operators

Version 1a: The Recommended Arithmetic Operators

W e provide vector addition and scalar multiplication by defining the
appropriate operators. Most books (e.g., Scott Meyers, More Effective

C++, Addison Wesley, 1996, Item22) recommend that you define binary
operators like+ in terms of their assignment analogues+=. (Doing it the
other way around would be less efficient.) Here is how to do this.

class Vector {

basic stuff

Vector& operator+=(const Vector& V2)

{v[0]+=V2[0];
v[1]+=V2[1];
v[2]+=V2[2]; return *this;}

Vector& operator*=(const float S)

{v[0]*=S; v[1]*=S; v[2]*=S;
return *this;}

};

inline const

Vector operator+(const Vector& A,

const Vector& B)

{return Vector(A) += B;}

inline const

Vector operator*(const float s,

const Vector& V)

{return Vector(V) *= s;}

Notice that we declare the binary operators to return const Vector
so that the compiler can flag nonsensical statements like A + B = C. Also,
the expressions in the return values of the binary operators are carefully
crafted to make the optimizer happy (see the Meyers reference above).

This works, but doesn’t generate the best possible code. For example,
consider the expression

D = A+3*(B+C)
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The problem is that the compiled code evaluates complicated expressions
“sideways”—it evaluates all three components for each operation and
stores each result in a temporary variable.

Vector temp1 = B+C;
Vector temp2 = 3*temp1;

Vector temp3 = A+temp2;
D = temp3

We would prefer to calculate the entire expression for each component.

D[0] = A[0]+3*(B[0]+C[0]);
D[1] = A[1]+3*(B[1]+C[1]);
D[2] = A[2]+3*(B[2]+C[2]);

Theoretically, a really hot optimizer—one that looked at a sufficiently
large window of the code—could turn the first version into the second
one, but in the real world, it doesn’t. Our goal, then, is to help the com-
piler automatically generate the better implementation.

Testing
Testing

T o whet your appetite, let’s take a look at some timing comparisons of
various implementations that I’m going to progress through (see Figure

18.1). I timed the execution of four different vector expressions:

D = A + B;

D = 3*A + 4*B;

D = A + 3*(B+C);
D = 3*A + 4*B + 5*C;

All timings are shown relative to the time taken for the simple vector as-
signment, D = A, to roughly compare these with simply the memory ac-
cess time. (All these statements were actually built into a loop that operates
on a small buffer of vectors.) Also included in the charts is the relative time
to do each calculation “the hard way” by explicitly calculating the elements
for a particular operation. One would think that this would be the fastest
possible implementation. Happily, some of the techniques shown here are
even better, largely because the compiler is able to make better use of
registers in these cases. Note that version 2 only works for the expression
A + B, and that version 3 is so slow that it’s off the charts and I didn’t
bother including it.
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Version 1b: Explicit Binary Operators
Version 1b: Explicit Binary Operators

F or our first efficiency improvement, let’s throw recommended software
engineering practice to the wind and define the binary operations di-

rectly. In this and all future modifications to the code, the highlighted ar-
eas are the only parts that have changed.

inline const

Vector operator+(const Vector& A,

const Vector& B)

{return Vector(A[0]+B[0],

A[1]+B[1],

A[2]+B[2]);}

inline const

Vector operator*(const float s,

const Vector& V)
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{return Vector(s*V[0],

s*V[1],

s*V[2]);}

The plus operation is now defined in two locations (+ and +=), and the
code is theoretically less maintainable, but how often do you need to re-
define addition? Anyway, in this version, there are fewer temporaries for
the optimizer to wade through, and the final code is faster, as shown in
Figure 18.1.

Version 2: Returning a Sum Object
Version 2: Returning a Sum Object

T he basic trick of this whole endeavor is to make the binary + operator
return, not a Vector object, but a new type of object that represents

the sum of two Vectors.

class Sum;

inline const

Sum operator+(const Vector& A,

const Vector& B)

{return Sum(A,B);}

The actual arithmetic in the vector summation is not performed until that
new Sum object is stored into another Vector via a Vector conversion
constructor (a Vector constructor that takes a Sum object as a parame-
ter). When you have such a constructor, it’s a typical C++ idiom that you
also include a conversion assignment operator, but this is purely for ef-
ficiency purposes. We will pull out the common functionality from the
constructor and the assignment into a routine called Evaluate. Our
Vector class now looks like this.

class Vector{

basic stuff

void Evaluate(const Sum& e);

Vector(const Sum& e)

{Evaluate(e);}

Vector& operator=(const Sum& e)
{Evaluate(e); return *this;}

};

The Sum object only needs to have a constructor and a subscripting
operator that evaluates the sum of a particular component.
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class Sum {

const Vector &L;

const Vector &R;

public:

Sum(const Vector& Linit,

const Vector& Rinit)

: L(Linit), R(Rinit) {;}

float operator[](int i) const

{return L[i] + R[i];}

};

Now we can define the body of Evaluate to simply call Sum::opera-
tor[] three times, once for each component, and store the results.

inline

void Vector::Evaluate(const Sum& e)

{v[0]=e[0];
v[1] =e[1];
v[2] =e[2];}

How Does This Work?
To see how this works, let’s follow what the compiler does for two exam-
ples. First, we look at an expression passed as a parameter to a function.
We start with

void func(const Vector& v){. . .}

Vector A,B;

func(A+B);

Let’s imagine the steps the compiler goes through in transforming and
inlining the function call into code. First we get

func (operator+(A,B));

This becomes

Sum    temp1(operator+(A,B)); //call operator+
Vector temp2(temp1); //convert to Vector

func  (temp2); //pass to function

And then it becomes

Sum    temp1(A,B);     // call Sum constructor

Vector temp2;
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temp2.Evaluate(temp1); //pass to Evaluate routine

func  (temp2);

In summary, operator+ creates a temporary Sum object that is passed
to the Vector constructor to create a temporary Vector object to pass
to func.

Our second example is a vector assignment. This will compile and
inline as follows. We start with

Vector A,B;

C=A+B;

The compiler successively transforms this into

C.operator=(operator+(A,B));

This becomes

Sum temp1(operator+(A,B));
C.operator=(temp1);

This becomes

Sum temp1(A,B)

C.operator=(temp1);

This becomes

Sum temp1(A,B);

C.Evaluate(temp1);

I’ve looked at the resulting object code from an optimizing compiler
and, without going into machine-dependant details, assure you that it is as
optimal as you can get. You can see the effect on the timing by looking at
Figure 18.1.

Version 3: Virtual Functions
Version 3: Virtual Functions

G reat! Super fast. Now how can we generalize this to the full panoply of
vector arithmetic expressions we want to be able to evaluate? We need

to handle whole parse trees for arbitrary expressions. In terms of language
constructs, we have the following syntactic elements that are expressions:

vector
expression + expression
float * expression
(expression)
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This is the type of thing that polymorphism was born to do. We first de-
fine an abstract base class for expression (with the very terse name E) and
derive objects from it. The definition of E declares only a pure virtual
indexing operator that we will require each of the derived objects to
override.

class E{

public:

virtual

float operator[](int i) const=0;
};

Now let’s adjust our definition of Vector. We need to do only two
things. Since a raw vector is a valid expression, the Vector class will in-
herit from E. Next, we use the abstract class E in any spots where we used
the explicit Sum class before.

class Vector : public E {

basic stuff

public:

void Evaluate(const E& e);

{v[0]=e[0];
v[1]=e[1];
v[2]=e[2];}

Vector(const E& e)

{Evaluate(e);}

Vector& operator=(const E& e)

{Evaluate(e);

return *this;}

};

Now to adjust the Sum object: we inherit from E and change its mem-
ber data to refer to objects of type E instead of type Vector.

class Sum : public E {

const E& L;

const E& R;

public:

Sum(const E& Linit,

const E& Rinit)

: L(Linit), R(Rinit) {;}

virtual

float operator[](int i) const

{return L[i] + R[i];}

};
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We can now proceed to define a similar object that represents scalar
multiplication.

class Prod : public E {

float s; const E& V;

public:

Prod(float Sinit, const E& Vinit)

: s(Sinit), V(Vinit) {;}

virtual

float operator[](int i) const

{return s*V[i];}

};

Finally, we define the binary operators themselves. Again, we just
change each operator to accept a general expression of type E.

inline const

Sum operator+(const E& A,

const E& B)

{return Sum(A,B);}

inline const

Prod operator*(const float s,

const E& V)

{return Prod(s,V);}

The neat thing about this tech-
nique is that it tricks the C++
compile time parser into pars-
ing our expression into the
appropriate calls to construct a
run-time expression tree. Be-
cause of this, we don’t need
to worry about parenthesized
expressions and operator prece-
dence. The C++ parser han-
dles this.

Now I’m going to do some-
thing naughty. I know you’re
not supposed to do this, but I

find it most edifying to think of objects in terms of their data layouts. The
data layout generated by our test expression A + 3*(B+C) appears in
Figure 18.2.
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The main problem with this code is that it is slow. This is due (indi-
rectly) to the virtual function mechanism. I say “indirectly” because virtual
functions are not inherently all that slow, it’s just that they interfere with
the optimizer and the inlining process, and inlining is the key to getting
the best object code. The timing measurements for various expressions
gave values of from 15 to 60 in units of memory-access time from Figure
18.1. Plotting this would have required a fold-out page. It didn’t seem
worth it.

So, we want to get rid of the run-time virtual function calls and make
them expand out at compile time. We’ll do this by exploiting a somewhat
surprising relationship between virtual functions and template functions.

Similarity between Virtual Functions and
Templates

Similarity between Virtual Functions and Templates

T his next trick will involve using templates to express the same sort of
functionality that virtual functions provide. How is this possible? First

let’s take a look at the similarities between the two. Consider the Evalu-
ate routine.

void Evaluate(const E& e);

{v[0]=e[0];
v[1]=e[1];
v[2]=e[2];}

}

Any such routine that is passed a parameter of type E can expect to be able
to call any of the operators listed in the definition of E. The compiler en-
forces this by making sure any class derived from E defines all the pure vir-
tual functions defined by E. (Here it’s just operator[].)

Now consider instead a templatized version of the function.

template <class E>
void Evaluate(const E& e)

{v[0]=e[0];
v[1]=e[1];
v[2]=e[2];}

}

A program that calls Evaluate can pass it any class of parameter as long
as that class defines all of the operations that Evaluate will apply to its
parameter. (Here it’s again just operator[].) The compiler enforces this
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indirectly by coughing up an undefined function error if the program at-
tempts to call Evaluate on a class that doesn’t define operator[].

The difference is that, with the templatized version, all this is done at
compile time.

Version 4a: Expression Templates
Version 4a: Expression Templates

T o turn this into code within our current scheme, we start with version 3
and mainly convert anything that inherits from a type E into a template

function or class parametrized by whatever E used to refer to. The sum ob-
ject turns into

// Sum<L,R>
template <class LexprT,

class RexprT>
class Sum {

const LexprT& L;

const RexprT& R;

public:

Sum(const LexprT& Linit,

const RexprT& Rinit)

: L(Linit), R(Rinit) {;}

float operator[](int i) const //no longer virtual

{return L[i] + R[i];}

};

The product object turns into

// Prod<V>
template <class VexprT>
class Prod {

float s;

const VexprT& V;

public:

Prod(const float sinit,

const VexprT& Vinit)

: s(sinit), V(Vinit) {;}

float operator[](int i) const //no longer virtual

{return s*V[i];}

};
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The vector object turns into

class Vector{ //no longer inherits from E

basic stuff

template <class T>
void Evaluate(const T& e)

{v[0]=e[0];
v[1]=e[1];
v[2]=e[2];}

template <class T>
Vector(const T& e)

{Evaluate(e);}

template <class T>
Vector& operator=(const T& e)

{Evaluate(e);return *this;}

};

And the binary operators are

template<class A, class B>
inline const

Sum<A,B> operator+(const A& a,

const B& b)

{return Sum<A,B>(a,b);}

template<class A>
inline const

Prod<A> operator*(const float& a,

const A& b)

{return Prod<A>(a,b);}

The keeping track of which version of operator[] to call, which
used to be controlled by run-time virtual function pointers, is now con-
trolled by the compile-time generation of some rather verbose class
names. Let’s see how this works by looking at our expression

D = A + 3*(B+C)

The compiler first expands the expression B + C, which constructs and
returns an object of type Sum<Vector,Vector>. Next, it sees the
expression 3*( previous expression). This generates an object of type
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Prod<Sum<Vector,Vector> >. Finally, it compiles the expression
A+( previous stuff ). This generates an object of type Sum<Vec-
tor,Prod<Sum<Vector,Vector> > >.

All this happens at compile time and generates calls to constructors to
build essentially the same data structure in Figure 18.1. We have no more
virtual function calls, and more code can inline. Each of these newly cre-
ated classes has its own operator[], which calls the correct opera-
tor[] for each of its subcomponents.

This machinery is a whole lot faster than virtual functions, as seen in
Figure 18.1. But the optimizer still generates some unnecessary temporar-
ies. We can do still better. We ultimately want to give the optimizer a data
structure it can completely optimize away.

Version 4b: Expression Templates with
Copying

Version 4b: Expression Templates with Copying

L et’s try to get rid of references by simply changing all the references into
actual copies of objects. The only thing that changes is the beginning of

the Sum and Prod class definitions.

template <class LexprT,

class RexprT>
class Sum {

const LexprT L; //no longer a reference but a copy

const RexprT R; //no longer a reference but a copy

the rest is same as before

};

template <class VexprT>
class Prod {

float s;

const VexprT V; //no longer a reference but a copy

the rest is same as before

};

This means that the parse tree will generate one big, lumpy object instead
of a lot of little blocks with pointers. The final expression object that is
built looks like Figure 18.3.
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The code to build this object (the calls to all the object constructors) is
much simpler since there are no references to initialize. But it does make a
copy of each vector. You can see in Table 18.1 that this kills us, speedwise.
We want a still simpler expression object. This leads us to our final
version.

Version 4c: Expression Templates with Only
Vector References

Version 4c: Expression Templates with Only Vector References

F igure 18.4 shows what we want our expression object to look like: one
object with embedded scalar constants but with references to already ex-

isting vectors instead of copies of them. Let’s see how we can accomplish
this.

Whenever we create a Sum<. . .,. . .> or Prod<. . .> object
using a Vector as one of the template parameters, we want to use a Vec-
tor reference instead of an embedded Vector object. Whenever any-
thing else is used as a parameter, we want it to operate as before. This
sounds like a job for . . . Template Specialization. We generate another
template class for parameters, P<. . .>, that is basically a no-op for the
default situation. We then specialize this class for vectors to P<Vector>
to do our needed indirection. The new code to define P is
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template<class anyT>
class P {

const anyT A; // note this is a copy

public:

P(const anyT & Ainit) : A(Ainit) {;}

float operator[](int i) const {return A[i];}

};

class P<Vector> {

const Vector& V; // note this is a reference

public:

P(const Vector& Vinit) : V(Vinit) {;}

float operator[](int i) const {return V[i];}

};

All we need now is to wrap any template parameters to
Sum<. . .,. . .> and Prod<. . .> in P<. . .> to get

template<class A, class B>
inline const

Sum<P<A>,P<B> >operator+(const A& a,

const B& b)

{return Sum<P<A>,P<B> > (a,b);}

template<class A>
inline const

Prod<P<A> >operator*(const float& a,

const A& b)

{return Prod<P<A> > (a,b);}

The Sum, Prod, and Vector classes are unchanged from the previous
version.

I did have to do one bit of tinkering to make all this inline properly.
We are going to have many nested trivial functions here, and some com-
pilers, by default, won’t inline code that is too heavily nested. The com-
piler I am using (Microsoft VC7) has an override to force inlining at any
depth:

#pragma inline_depth(255)

This must be in effect for the compilation of the user’s code since that is
what is generating all the template expansions. All this may seem like we’re
coddling the compiler. But you have to realize that we are not in conflict
with the compiler; we’re in a partnership with it. We want to make it easy
for the compiler to do the right thing.
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Version 4c generates optimal code on all the examples I tried. Again,
look at the final timings appearing in Figure 18.1. They are actually faster
than explicit component-by-component code.

Summary
Summary

A ll this was pretty complicated, so a fair question to ask is “Is this worth
it?” The answer is “Worth it to whom?”
Every programming language has a gimmick. The gimmick of C++ is

to put as much intelligence into the class libraries as possible, which makes
things as easy as possible for the users of those classes. Even though there
is a lot of complexity in the implementation of vector arithmetic, any user
of the Vector class doesn’t see that complexity. They can create Vec-
tors and perform arithmetic on them with ease and with confidence that
the best possible code will be generated. It makes the class more compli-
cated, but makes life easier for the user of the class. That’s the classical
tradeoff in C++: the needs of the many outweigh the needs of the few.
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Chapter Nineteen: Polynomial Discriminants Part I, Matrix Magic

C H A P T E R N I N E T E E N

Polynomial Discriminants
Part I, Matrix Magic

N O V E M B E R – D E C E M B E R 2 0 0 0

I like beautiful equations. But beauty is sometimes subtle or hidden by
bad notation. In this chapter and the next, I am going to reveal some of

the hidden beauty in the explicit formulation of the discriminants of poly-
nomials. Along the way, I will drag in some clever algebra, promote some
notational schemes from mathematical physics, and illustrate some ways of
visualizing homogeneous space. This will ultimately lead us to some inter-
esting ways to find roots of these polynomials, a task that will become
more and more important as we computer graphicists struggle to break
free of the tyranny of the polygon and move into rendering higher-order
surfaces.

So first, let’s review discriminants.

Discriminants
Discriminants

I ’ll soften you up a bit by starting with something already familiar: the
quadratic equation.

Quadratics
A general quadratic equation is

ax2 + bx + c = 0

2det det

det

det 2det

A B A B
B C C D

A B B C
C D C D
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We learn in high school that the solution of this equation is

The discriminant is the value under the square root sign:

∆2 ≡ b2 − 4ac

The polynomial will have 0, 1,
or 2 real roots depending on the
sign of the discriminant. If it is neg-
ative, there are no real roots; if it’s
positive, there are two distinct real
roots; and if the discriminant is
zero, there is a double root (i.e., two
coincident real roots). (See Figure
19.1.) A more generalizable way to
derive the discriminant is to note
that it is zero if there is some pa-

rameter value where both the function and its derivative are zero. In other
words, we want to simultaneously solve

To find if this is possible for a given quadratic, just solve the derivative
equation for x and plug it into the quadratic. The result is an expression in
abc that simplifies to the above discriminant.

Cubics
Stepping up to cubic equations, we have

ax3 + bx2 + cx + d = 0

As with quadratics, we can find the discriminant by equating the func-
tion and its derivative to zero:

(19.1)

We can find the discriminant—the condition on abcd that makes this
possible—by various methods. We could solve the quadratic for x and sub-
stitute that into the cubic equation. A more general technique is to form
the, so-called, resultant of the two polynomials. This basically involves
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taking various linear combinations of them to form new polynomials of
lower degree. I won’t go into details here, but for cubics this process leads
to something called the Sylvester determinant1,2,3:

A similar technique is Bezout’s method.3 This also takes various linear
combinations, and constructs a smaller but more complicated matrix. We
ultimately get

Of course, we could take the easy way out and just look it up on the
Web. Two sites that have the answer are

mathworld.wolfram.com/D/DiscriminantPolynomial.html
www.britannica.com/seo/d/discriminant

Converting these to our notation, the result is

∆3 = c2b2 − 4db3 − 4c3a + 18abcd − 27d2a2 (19.2)

This ungainly mess is rather harder to remember than the quadratic
discriminant. But it is useful. As with quadratics, its value (or rather the
square root of its value) figures prominently in the solution of the polyno-
mial. If it’s negative, the cubic has exactly one real root; if it’s positive,
there are three distinct real roots. And if it’s zero, the cubic has a double
root and another single root, or possibly a triple root (see Figure 19.2).

Quartics
If you think that’s bad, take a look at quartic polynomials. The equation is

ax4 + bx3 + cx2 + dx + e = 0
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Following the procedure outlined above, we surf over to one of these
two sites:

www.inwap.com/pdp10/hbaker/hakmemgeometry.html
mathworld.wolfram.com/DiscriminantPolynomial.html

We arrive at the truly stunning

(19.3)

Aesthetics
These discriminants look really ugly in their explicit form. But there is an
interesting pattern embedded in them. Finding that pattern is our mathe-
matical journey for today.

A Homogeneous Matrix Formulation
A Homogeneous Matrix Formulation

M y first urge in any algebraic discussion is to write things in homoge-
neous form, in this case, as homogeneous polynomials. This general-

izes the parameter value from the simple quantity x to the homogeneous
pair [x w].

Quadratics
The homogeneous quadratic equation is

ax2 + bxw + cw2 = 0

The main thing that homogeneity brings to the party is the addition of a
new “parameter at infinity” at the value This means that if
the parameter a is zero, the quadratic does not simply degenerate into a
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linear equation. Instead, it remains a quadratic, but it simply has one of its
roots at infinity (w = 0).

Next, I want to indulge an even stronger algebraic urge: to write
things in matrix form. To make this a bit neater, I will first modify the no-
tation for the coefficients to build in some constant factors. I’ll write the
quadratic equation as

Ax2 + 2Bxw + Cw2 = 0

This allows us to write the quadratic equation as a symmetric matrix
product:

(19.4)

(This way of representing a quadratic is related to a technique known as
blossoming.) The solutions now become

And the discriminant is

∆2 = B2 − AC

We can recognize this as minus the determinant of the coefficient matrix:

Neat. We’ve expressed the formula for the discriminant in terms of a com-
mon matrix operation: the determinant.

Cubics
Bumping up to cubics, I will similarly rename the coefficients

Ax3 + 3Bx2w + 3Cxw2 + Dw3 = 0 (19.5)

Plugging in these renamed coefficients, the discriminant from Equation
(19.2) transforms to

∆3 = 3C 2B2 − 4DB3 − 4C 3A + 6ABCD − D2A2 (19.6)

Now, to make a matrix representation of Equation (19.5) analogous to
Equation (19.4), we want to arrange these coefficients into a 2×2×2
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symmetric “cube” of numbers. There are various ways to show this, but
they are all a bit clunky. About the best you can do with conventional ma-
trix notation is to think of the coefficients as a vector of 2×2 matrices.
Equation (19.5) becomes

(19.7)

Once we have this triply indexed cube of numbers, we can hope that the
discriminant can be written as some sort of cubical generalization of the
determinant. Let’s find out what it is.

A Kinder, Gentler Cubic Discriminant
A Kinder, Gentler Cubic Discriminant

A defining property of the discriminant is that it is the condition that
there is a parameter value where both the function and its derivative are

zero. For a homogeneous cubic, we want the condition on (ABCD) that al-
lows simultaneous solution of

(19.8)

To visualize what this means, note
that having both the partial deriva-
tives of f be zero means that the f
function is tangent to the f = 0
plane at that point. That is, there
is a double root there. See Figure
19.3.

Comparing this with Equation
(19.1), it looks at first as if go-
ing to homogeneous polynomials
gives us an extra equation. But it re-
ally doesn’t. That’s because of the
identity

3f = xfx + wfw

So the new derivative is just a linear
combination of the function and the
original x derivative. This means
that we can pick any two equations
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out of Equation (19.8) to work with further. I don’t know about you, but
the two I’m going to pick are the two lower-order ones. Tossing out a con-
stant factor of 3, we get the following two equations that we want to solve
simultaneously:

(19.9)

Linear combinations helped us before; let’s see what else they can do
for us. If the two equations above are both zero, then any linear combina-
tion of them also equals zero. We can get an equation without an x2 term
by the linear combination

And we can symmetrically get an equation without the w2 term by the
combination

Tossing out common factors of x and w, we see that we have knocked the
simultaneous quadratics in Equation (19.9) down to two simultaneous lin-
ear equations.

(19.10)

What we are saying is that if Equation (19.10) can be satisfied, then
Equation (19.9) can be also. Each of the equations in (19.10) is easy to
solve. The condition that the two solutions be equal leads us to

(19.11)

The final expression for the discriminant is then

(19.12)

If we multiplied this out we would get Equation (19.6), but Equation
(19.12) is certainly a lot prettier. But wait, it gets better.
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With some imagination, we can recognize that the various paren-
thesized quantities in Equation (19.12) are (with a few sign flips that cancel
each other out) just the determinants of various slices of the cube of coef-
ficients. Let’s give them names:

We can now write the cubic discriminant as

∆3 = 4δ1δ3 − δ2
2

I love symmetry in algebra. You will note that any time we come up
with something that is the difference of two products, I have an irresistible
urge to write it as the determinant of a 2×2 matrix. And if it is the differ-
ence between the square of something and another product, I want to
make it the determinant of a symmetric matrix. Satisfying this urge one
more time gives

(19.13)

In other words, the cubic discriminant is a determinant of determi-
nants. If this discriminant is zero, we know that there is a double root. And
we know what it is. In fact, we have two formulations of it. Rewriting
Equation (19.11) in terms of the δi, we have

Or, in more homogeneous terms, the two equivalent formulations become

or

It’s useful to have a choice here. If two of the δi’s are zero, at least one of
the two choices still generates a meaningful root.

262 Chapter Nineteen: Polynomial Discriminants Part I, Matrix Magic

1 2
3

2 3

2
det

2
δ δ 

∆ =  δ δ 

2 3

1 2

2
2

x
w

δ − δ
= =
− δ δ

2 12x w   = δ − δ   

3 22x w   = δ −δ   

2
1

2

2
3

det

det

det

A B
AC B

B C

A B
AD BC

C D

B C
BD C

C D

 
δ = − =  

 

 
δ = − =  

 

 
δ = − =  

 



Back to Our Roots
Back to Our Roots

T here is one more useful piece of information hidden here. To find it, I’ll
expand the polynomial in terms of its roots. It will also be a little less

cluttered if we go back to the nonhomogeneous version:

The coefficients in our notation scheme are

(19.14)

Plugging these into the definitions of the δi and doing some simplifying,
we get

(19.15)

This means that if there is a triple root, where r1= r2, then not only is ∆3=
0 but all three components are zero, δ1= δ2= δ3= 0. From the definitions
of the δi and Equation (19.14), this means that

Or, in homogeneous terms, the triple root has the three equivalent
formulations

Again, the alternative formulations are useful. For example, if A = 0 (im-
plying B = C = 0) or if D = 0 (implying B = C = 0), at least one of the
choices generates a meaningful root.

So, I’ll summarize.
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■ For a quadratic, write the coefficients as a symmetric 2×2 matrix. The
discriminant is minus the determinant of the matrix. If this is zero, the
quadratic has a double root.

■ For a cubic, write the coefficients as a symmetric 2×2×2 cube of
numbers. Calculate the three subdeterminants δ1, δ2, δ3. If all three are
zero, the polynomial has a triple root. Otherwise, the discriminant is
the determinant from Equation (19.13). If this is zero, then the cubic
polynomial has a double root (and an additional single root).

Quartics
Quartics

E mboldened by this success, let’s go for broke and see what we can do
with quartics. The homogeneous polynomial is

We can think of this as a 2×2×2×2 hypercube of coefficients. The best
we can do with matrix notation is as a 2×2 matrix of 2×2 matrices:

Rewriting the big fat Equation (19.3) for the discriminant in terms of
our new coefficient names gives

(19.16)

We want to see if there is a prettier way to write this. Let’s apply the same
technique we used for the cubic; start with the desire to simultaneously
solve for the two partial derivatives being zero:

(19.17)

Now we go through our process of successively knocking down the
degree by linear combinations. We form
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and

Again, it’s beneficial to give names to the parenthesized expressions
above. By extension to the terminology for cubics, I will define

(19.18)

So, in these terms, our linear combo trick has resulted in the two simulta-
neous equations

Now we keep turning the crank. We reduce the above quadratics to
linears by taking one linear combination to shave the x2 term off one end
and another combination to shave the w2 term off the other end. This ulti-
mately results in

Again, mimicking our actions for the cubic, these two linear equations
will have a common root if

(19.19)

The urge to write this as a matrix takes hold and we get

We might be tempted, then, to say that the quartic discriminant is a
determinant of determinants of determinants. But that can’t be right. No-
tice that equation (19.19) is eighth order in ABCDE while the correct ver-
sion in Equation (19.16) is sixth order. What happened?
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Watch me pull a rabbit out of my hat. Behold the identity:

(19.20)

If you like, you can convince yourself of this by plugging in the definitions
of the δi’s from Equation (19.18), but how did I know to try this? Well,
there’s an interesting parallel between the arithmetic we did in defining
the six δi values and the arithmetic involved in constructing the six compo-
nents of a 3DH line from two 3DH points. I described this in some detail
in “A Homogeneous Formulation for Lines in 3 Space,” SIGGRAPH 77,
pp. 237–241, where I showed that the six values generated by Equation
(19.18) must always satisfy Equation (19.20). Now let’s use it.

If we multiply out Equation (19.19) and do a little obvious factoring,
we get

Now apply the identity (19.19), and we get

We now can factor δ0 out of this to give the correct quartic discriminant:

Nice but still not nice enough. Watch closely—my fingers never leave the
keyboard. By applying the identity again, we can turn this into

Which, as anyone can plainly see is

This is just an application of the formula for the resultant of two cubics
given in Kajiya.4 The two cubics in question are the two derivatives in
Equation (19.17).
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4 Kajiya, J., “Ray Tracing Parametric Patches,” Proc. Siggraph 82, ACM Press, New York, 1982, p. 248.



This is pretty, but not pretty enough. There is another representation
of the discriminant of a quartic that’s even better. It’s buried in some hun-
dred-year-old lectures by Hilbert, reprinted recently.5 Hilbert defined two
quantities that, translated into our terminology, are

Then the quartic discriminant happens to be

(19.21)

You can verify this for yourself by simple substitution. I won’t wait . . .

Behind the Curtain
Behind the Curtain

T he expression for the discriminant in Equation (19.13) is a lot prettier
than the one in Equation (19.6). And the expression in Equation (19.21)

is a lot prettier than Equation (19.16). But I suspect that you are wonder-
ing how I knew to take some of the steps to get there. The answer is that I
am using some notational tools that I have not yet told you about. These
new tools are motivated by notational clunkiness of Equation (19.7) and
are based on the Feynman diagram techniques I wrote about in Jim Blinn’s
Corner: Dirty Pixels, Chapters 9 and 10, “Uppers and Downers” (Parts I
and II). Expressing the discriminants using this notation gives us an even
more beautiful result. But in order to appreciate it, you must learn this
new notational language. We’ll do that in the next chapter.
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5 Hilbert, D., Theory of Algebraic Invariants, Cambridge University Press, 1993, pp. 72, 74.





Chapter Twenty: Polynomial Discriminants Part II, Tensor Diagrams

C H A P T E R T W E N T Y

Polynomial Discriminants
Part II, Tensor Diagrams

J A N U A R Y – F E B R U A R Y 2 0 0 1

S everal years ago, Jim Kajiya lent me a copy of a book called Diagram
Techniques in Group Theory (G. E. Stedman, Cambridge University Press,

Cambridge, England, 1990). This book described a graphical representa-
tion of the algebra used to solve various problems in mathematical physics.
I was only able to understand the first chapter, but even that was enough to
excite me tremendously about adapting the technique to the algebra of ho-
mogeneous geometry that we are familiar with in computer graphics. I
have written up my initial efforts in Chapters 9 and 10, “Uppers and
Downers” (Parts I and II), of Jim Blinn’s Corner: Dirty Pixels. Recently, I’ve
been playing more and more with these diagrammatic ways of doing alge-
bra and have come up with a lot of interesting results. This chapter pres-
ents the first of these—the use of diagrams to compute discriminants of
polynomials and to solve a related problem: line-curve tangency. To get
into this, I’ll briefly review the parts of “Uppers and Downers” that will be
useful here.

2D Homogeneous Geometry
2D Homogeneous Geometry

T wo-dimensional homogeneous geometry uses three-element vectors,
3×3 matrices, 3×3×3 tensors, and so forth, to represent various ob-

jects. I’ll denote such quantities in uppercase boldface to distinguish them
from polynomials discussed later, for which I’ll use lowercase boldface.

c

c

c

c



For example, a homogeneous point P is a three-element row vec-
tor, and a line L is a three-element column vector. The point lies
on the line if the dot product is zero. Table 20.1 shows dif-
ferent ways of expressing the dot product. Parts (a), (b), and (c)
should be familiar to you. I’ll explain parts (d) and (e) shortly.

Moving up to curves, the points on a second-order (qua-
dratic) curve satisfy the equation in Table 20.2(a). We can write
this in matrix form by arranging the coefficients into the 3×3
symmetric matrix of Table 20.2(b), and with dot products in
20.2(c).

Next up, the points on a third-order (cubic) curve satisfy
Table 20.3(a). We can also write this by arranging the coefficients

into a 3×3×3 symmetric generalization of a matrix. Doing this with con-
ventional matrix notation is a bit weird. About the best we can do is to
show it as a vector of matrices as in Table 20.3(b).

Now let’s talk about transformations. We geometrically transform
points by postmultiplying by a 3×3 matrix: PT = P′, and we transform
lines by premultiplying by the adjoint of the matrix: T*L= L′. Table 20.4

shows various ways to write these expressions, as well
as those for transforming curves.

Finally, the cross product of two point-vectors P
and R gives the line passing through them: P × R =
L. See Table 20.5. In a dual fashion, the cross product
of two line-vectors L and M gives their point of inter-
section: L ×M = P.

The Problem
The Problem

I n looking over these expressions, we see two hints
that our notation has problems. The first is the need

to take the transpose of P when multiplying by Q.
This is very fishy; column matrices are supposed to
represent lines, not points. In fact, there is something
fundamentally different about matrices that represent
transformations and matrices that represent quadratic

curves. We cannot, however, distinguish between them with standard vec-
tor notation. The second hint is inability to conveniently represent entities
with more than two indices. Our attempt to arrange the coefficients of a
cubic polynomial into a triply indexed “cubical matrix” is an example of
the problem.

Fortunately, there are two notational schemes that we can adapt from
the world of theoretical physics to alleviate these shortcomings: Einstein
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⋅P L

Table 20.1 Point on a line

(a)

(b)

(c)

(d)

(e)

0Ax By Cw+ + =

0
A

x y w B
C

 
   =  
  

Table 20.2 Point on a quadratic curve
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index notation (EIN) and the diagram notation I referred to in my open-
ing monologue. I originally called these Feynman diagrams, but there are
enough differences to give them the more appropriate name tensor dia-
grams. They are more like the diagrams in Kuperberg.1

2DH Tensor Diagrams
2DH Tensor Diagrams

E instein index notation differentiates between two types of indices for
vector/matrix elements: the point-like ones (which we will call con-

travariant and write as superscripts) and the line-like ones (which we will
call covariant and write as subscripts). Thus an element of a point-vector is
Pi and an element of a line-vector is Li. (Note that superscript indices are
not the same as exponents. Mathematicians ran out of places to put indices
and started overloading their notation. Live with it.) These things are easy
to get mixed up and backwards so, for reference, I’ll post the following ref-
erence diagram:
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Table 20.3 Point on a cubic curve
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1 Kuperberg, Greg, “Involutory Hopf Algebras and 3-Manifold Invariants.” International Journal of
Mathematics, Vol. 2, No. 1, 1991, pp. 41–66.



Table 20.4 Transformations

Point Line Quadratic Cubic
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(c) Messy
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Dot products happen only between matching pairs of covariant and
contravariant indices. Thus the dot of a point and a line (using indexes
starting at 0) is

We simplify further by omitting the sigma and stating that any super-
script/subscript pair that has the same letter implicitly implies a summa-
tion over that letter. The EIN form of a dot product is then simply

A more complicated expression may have many tensors and superscripts
and subscripts, and will implicitly be summed over all pairs of identical up-
per/lower indices. (These summations are also called tensor contractions.)
We can see this in the EIN for higher-order curves in Tables 20.2(d) and
20.3(d). Note that the expression for EIN is basically a model for the terms
that are summed. Each individual factor in the notation is just a number,
so the factors can be rearranged in any order, as Table 20.3(d) shows.

Basic Diagrams
Tensor diagram notation is a translation of EIN into a graph. We repre-
sent a point as a node with an outward arrow indicating a contravariant in-
dex. A line, with its covariant index, is a node
with an inward arrow. The dot product—that is,
the summation over the covariant/contravariant
pair—is an arc connecting two nodes. See the
bottom rows of Tables 20.1 through 20.3 for the
diagram notation of the expressions we have
seen so far. For many of the diagrams, I will la-
bel the arcs with the index they correspond to in
EIN. Some later, more complex, diagrams will
not need this.

Transformations
A transformation matrix has one contravariant
and one covariant index. Multiplying a point by
such a matrix will “annihilate” its covariant in-
dex, leaving a result that has a free contravari-
ant index, making the result be a point. Table
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i
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Table 20.5 The cross product
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P

R

L
i

j k k
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0 1 2
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i
i

i

P P P L L L

P L
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=∑
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20.4(d) shows the EIN form of the transformation of various quantities.
Table 20.4(e) shows how this translates into diagram notation. Now we
can see the difference between the two types of matrices. A transformation
matrix has one of each type of index (denoted with one arrow out and one
arrow in); a quadratic matrix has two covariant indices (denoted with both
arrows in). In Table 20.2(d), the two contravariant/covariant index pairs
annihilate each other to produce a scalar.

Cross Products and Adjoints
We abbreviate the algebra for cross products and matrix adjoints by defin-
ing a three-index 3×3×3 element antisymmetric tensor called the Levi-
Civita epsilon. The elements of epsilon are defined to be

(20.1)

Multiplying two vectors by epsilon forms their cross product. Since epsi-
lon has three subscript indices, multiplying in two points with superscript
indices will result in a vector with one remaining subscript index (a line);
see Table 20.5(d). The diagram form of epsilon is a node with three
inward-pointing arcs. We will show this node as a small dot, as in Table
20.5(e). You can imagine a variant of Table 20.5 for the dual form, the
cross product of two lines: L×M= P. Just use a contravariant form of ep-
silon, εijk, so that Li Mjε

ijk = P k, and flip the direction of all arrows in the
diagram.

We must be careful about how the antisymmetry of epsilon is rep-
resented in a tensor diagram. The convention is to label the arcs counter-
clockwise around the dot. A mirror reflection of an epsilon node will
reverse the order of its indices, and therefore flip its algebraic sign.

Epsilon is also useful to form matrix adjoints. Table 20.6 shows various
ways to denote the adjoint. Table 20.6(a) explicitly shows that each ele-
ment of the adjoint is a second-order polynomial of the elements of Q. Ta-
ble 20.6(b) shows how each column of Q* is the cross product of two rows
of Q. This gives us a lead-in to the EIN in Table 20.6(d) being constructed
of the same epsilons that gave us cross products in Table 20.5. The raw
EIN expression QijQklε

ikmε jln gives twice the adjoint, so I had to insert a fac-
tor of to get the correct answer. Table 20.6(e) shows the diagram. Note
that the diagram has two Q nodes, which reflects the fact that the elements
of Q* are second order in the elements of Q, and also shows another nota-
tional convention: I put the scalar factor into a scalar node, one with
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012 120 201

210 021 102

1
1

0 otherwiseijk

ε = ε = ε =+

ε = ε = ε =−

ε =

1
2

1
2−



no arrows in or out. Furthermore, I’ve chosen to mirror the first epsilon in
the EIN (and introduce a corresponding minus sign) to make the whole
diagram a bit prettier. These factors and signs clutter things up a bit but
are necessary.

Now that we have the adjoint, the determinant is not far behind. We
use the fact that

We tie up the loose ends, literally, by taking the trace of this getting

So in diagram terms, connect the adjoint from Table 20.6(e) to another
copy of Q and take the trace by connecting the two dangling arcs. Divide
by 3 to get the determinant. The resulting diagram is in Table 20.7(e).
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Table 20.6 The adjoint of a 3×3 matrix

(a)

(b)

(c)

(d)

(e)

2 *
*

DF E A
CE BF B
− =

− =

	

det det det

det det det

det det det

, ,

D E B E B D
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      
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      
       − − =           
 

      
−            

            
× × × 

 
           

* * *
* * *
* * *

A B C
B D E
C E F

 
 
= 
  

adj *=Q Q

( )1
2 *

mnjlnikm
ij klQ Q Qε ε =

=

Q

Q

Q*
i j

m k l n m n

1
2−

( )* det=Q Q Q I

trace * 3det=Q Q QΑ Β



Homogeneous Polynomials
Homogeneous Polynomials

N ow let’s go down a dimension and take a look at 1D homogeneous
geometry. This is effectively the study of homogeneous polynomials.

Basically, we have the same thing as before, but
everything is now composed of two-element vec-
tors, 2×2 matrices, and 2×2×2 tensors, which I’ll
write as lowercase boldface. A homogeneous linear
equation is written in various notations in Table
20.8.

Table 20.9 shows a homogeneous quadratic
equation.

Table 20.10 shows a homogeneous cubic equa-
tion. Unfortunately, I find that I have to use the
letter C in two contexts, once as a coefficient
(italic) and once as a tensor name (bold). Live
with it.

The 2D Epsilon
The only slightly subtle item is the form of the two-element epsilon. In-
stead of having three indices, each with three values, the two-element epsi-
lon has two indices (making it a simple matrix), each with two values. By
analogy to Equation (20.1) the covariant form of epsilon is
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Table 20.7 Determinant of 3×3 matrix

(a)

(b) [ABC ]×[BDE]⋅[CEF ]

(c)

(d)

(e)

2 2 22 detABD BCE C D E A B F+ − − − = Q

det Q
1
6

jlnikm
ij kl mnQ Q Q ε ε

Q

Q

Q

i

k

m

j

l

n

1
6−

Table 20.8 Homogeneous linear equation

(a)

(b)

(c)

(d)

(e)

Table 20.9 Homogeneous quadratic equation

(a)

(b)

(c)

(d)

(e)

2 22 0Ax Bxw Cw+ + =

0T =pqp

0ji
ijp p q =

p q = 0p

0Ax Bw+ =

0
A

x w
B
 

  =  
 

0⋅ =p l

0i
ip l =

p l = 0

0
A B x

x w
B C w
  

  =   
  

01

10

1
1

0 otherwiseij

ε =+

ε =−

ε =



In other words,

The Einstein notation is simply εij or εij, and the
diagram notation looks like

I have purposely constructed this icon to be
asymmetrical. The convention is that when the
diagram points down (as above), the first index is
on the left. A mirror reflection of this diagram
will perform a sign flip on the value of the dia-
gram. If the diagram were not asymmetrical, a
mirror flip would not be detectable. To drive this
home, compare the EIN expressions

with their diagram counterparts. The first equality represents a rotation
(no sign flip), and the second has a reflection (with a sign flip):

Now let’s use the epsilon. The adjoint of a 2×2 matrix, by analogy to
Table 20.6, gives us Table 20.11.

We get the determinant by analogy to Table 20.7: multiply q* by q and
take the trace. This gives twice the determinant. Flip one of the epsilons to
make the diagram neater. We get Table 20.12.
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i j i j

ij ij ji
i j j i j im n n m n mε = ε =− ε

0 1
1 0

 
ε= − 

Table 20.10 Homogeneous cubic equation

(a)

(b)

(c) Messy

(d)

(e)
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0ji k
ijkp p p c =
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C D
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Table 20.11 The adjoint of a 2×2 matrix

(a)

(b)

(c)

adj *=q q

( )* ilij lk
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=q q*

lk

i

i l
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Table 20.12 The determinant of a 2×2 matrix

(a)

(b)

(c)

det q
1
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ij lk
jk liq q ε ε

= det qqq

i j
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1
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A 1DH Application: Discriminants
A 1DH Application: Discriminants

T he discriminant of a polynomial is a condition on the coefficients that
guarantees that the polynomial has a double root. In the previous chap-

ter, we learned how to write this quantity in matrix terms. Now let’s see
how this looks in diagram form.

Quadratic
The discriminant of the quadratic polynomial from Table 20.9(a) is

In diagram form, this is

(20.2)

Cubic
The discriminant of the cubic polynomial of Table 20.10(a) is

(20.3)

where the matrix elements are defined as
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What does this look like in diagram form? Let’s look at the individual
“slices” of the c tensor. We form these by multiplying one index by a “basis
vector” like (1,0) or (0,1):

The determinants of these two matrices are

Now what happens if we mash together c1 and c2 as a sort of “cross deter-
minant” with the diagram form

The value of this diagram is, in conventional matrix form,
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= =c1,0 c1
A B
B C
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 
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A B
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 
 
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c2c2 =−2det = δ3−2
B C
C D
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c2c1

2

2
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0 1 0 1
1 0 1 0

0

A B B C
trace

B C C D

BC AD AC B
trace

C BD

BC AD
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− =−δ



Now, remembering the definitions of c1 and c2, we have just shown that

What we have just done is to find expressions for each of the elements of
the matrix in Equation (20.3). In other words,

One interesting thing about this demonstration is that it shows why
there are factors of 2 for the δ1 and δ3 entries, but not for the δ2. Anyway,
the final step is easy. The discriminant of the cubic c equals the determi-
nant of this matrix (with the appropriate minus sign and scale factor):

(20.4)

You can see this as a nice generalization of the discriminant diagram for
the quadratic polynomial. Furthermore, a little scratch work will show that
Equation (20.4) is the simplest diagram that can be formed from epsilons
and c nodes that is not identically zero.
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Quartic
In the last chapter, I showed a statement by Hilbert that the discriminant
of the quartic polynomial

can be found by first calculating the two quantities

(20.5)

The discriminant is then

Now let’s see if we can write
this as a tensor diagram. First
study Table 20.13, which
gives various ways to write the
quartic equation. The quartic
polynomial is a node with
four arcs.

The two simplest dia-
grams that you can form from
four-arc nodes and epsilons
are
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Table 20.13 Homogeneous quartic equation

(a)

(b)

(c) Messy, messy

(d)

(e)
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Using techniques similar to those in the next chapter, I’ve been able to
evaluate these diagrams and verify that

Hot damn . . . Hilbert’s invariants match up with the two simplest possible
diagrams. Some fiddling with constants gives us

The Invariance of Invariants
The Invariance of Invariants

T he discriminant of a polynomial is an example of an “invariant” quantity.
Invariant, in this case, means invariant under parameter transforma-

tions. When you calculate such a quantity for a polynomial, its sign will re-
main unchanged if the polynomial is transformed parametrically. This
makes sense since the number and multiplicity of roots of a polynomial do
not change under parameter transformation.

1DH
Tensor diagrams are particularly useful to express invariant quantities be-
cause of the following identity:
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We can easily verify this by explicit calculation

Now, let’s apply this to the simplest of our discriminants, the qua-
dratic. We start with

We now do a parameter transformation on q. The 1DH analog to the
equations in Table 20.4 is

Putting this into our discriminant equation and applying our identity gives

In other words,

As long as we don’t do anything silly, like transform by a singular matrix,
the sign of the discriminant of a quadratic is invariant under coordinate
transformation.

This seems pretty obvious, but there’s a bigger idea lurking in it. It
should be pretty simple to see that
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Any diagram made up of a collection of nodes glued together with the
appropriate number of epsilon nodes will represent a transformationally
invariant quantity.

If there are an even number of epsilons, the sign is invariant; if there are an
odd number of epsilons, just the zeroness of the quantity is invariant.

You can imagine any number of diagrams formed in this way; each of
them represents some invariant quantity under parameter transformation.
Many of these, however, will be uninteresting. For example, you can show
that the following diagram is identically zero:

Hilbert’s book (referenced in the previous chapter) is all about alge-
braic rules for generating invariant quantities. We can do this much more
simply with tensor diagrams. For example, we know that the two expres-
sions in Equation (20.5) are invariant simply because they can be gener-
ated by tensor diagrams.

2DH
The 2DH epsilon has a similar identity involving transformation matrices
that we had in 1DH:

This means that any 2DH tensor diagram made up of polynomial nodes
and epsilons represents a transformational invariant.

A 2DH Application: Tangency
A 2DH Application: Tangency

N ow let’s use these 1DH results to solve a 2DH geometry problem:
tangency.
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Quadratic with Line
Table 20.2 gave us the condition of a point P being on a quadratic curve Q.
How can we generate an expression that determines if a line L is tangent
to curve Q? (I’ve stated the answer to this before; now I’m going to prove
it.) Let’s start by assuming that we have two points on L, call them R and
S. (We don’t need to know how we found these two points. In fact, they
will disappear shortly.) A general point on the line is then

In matrix notation,

The 2×3 matrix V is a sort of conversion from the world of 2D (1DH)
vectors (homogeneous polynomials) to the world of 3D (2DH) vectors
(homogeneous curves). Let’s write this in diagram form. (For these mixed-
mode diagrams, I’ll make thicker arrows for the three-element summa-
tions and thinner arrows for the two-element summations.)

If we plug this into the quadratic curve equation, we get a homoge-
neous polynomial in (α, β) that evaluates the quadratic function at each
point on the line:

We’ve turned the 3×3 symmetric quadratic curve matrix Q into a 2×2
symmetric quadratic polynomial matrix that we’ll call q. Writing just q by
itself we get

The condition of the line being tangent to the curve is the same as the
condition that there is a double root to this polynomial. The polynomial
has a double root if the determinant of its matrix formulation is zero.
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( )α β = α + βP , R s

0 1 2

0 1 2
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S S S
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 
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P a V=
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=P Q P

a q a
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Plugging the above into the diagram form of the determinant and setting
it to zero gives us the condition that the polynomial has a double root, and
thus that the line hits the curve at exactly one point:

(20.6)

Now let’s look more closely at the following diagram fragment:

Write this as a matrix product:

You can recognize the elements of this matrix as the components of the
cross product of the two points R and S. But these are just the elements of
the line-vector L arranged into an antisymmetric matrix. In diagram form,
we can show this as

We can therefore say that

(20.7)

Note that the right-hand side of this doesn’t contain any explicit points on
L. So if all you have are the L components, you do not need to explicitly
find points on L. Putting Diagrams (20.6) and (20.7) together, we get the
condition that the line L is tangent to curve Q:
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(20.8)

This diagram, without the L nodes, is just the expression of the adjoint of
the matrix Q from Table 20.9(c) (times minus two). In other words, while
we use Q to test for point incidence, we use Q* to test for line incidence
(tangency):

Cubic with Line
So, going up an order, what is the condition of line L being tangent to a
cubic curve C? That is, we want an expression involving the vector L and
the cubic coefficient tensor C that is zero if L is tangent to C. With the
groundwork we’ve laid, this is easy. First, compare Diagrams (20.6) and
(20.8) to see how we converted the 1DH quadratic polynomial discrim-
inant into a 2DH quadratic curve tangency equation. We just replaced
each 2D epsilon with a 3D epsilon attached to a copy of L, and replaced q
with Q. Now do the same thing with the discriminant of a cubic polyno-
mial (20.4). We get
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This diagram represents a polynomial expression that is fourth order
in C and sixth order in L. Since it has 18 arcs, the EIN version of this
would require 18 index letters. All in all, it is something that would be
rather difficult to arrive at in any other, nondiagram, way.

Since the tangency expression is sixth order in L, it is reasonable to ex-
pect that it is possible to find a situation where there are six tangents to a
cubic from a given point. This seems excessive, but it is possible as Figure
20.1 shows.

A 2DH Application: Discriminants
A 2DH Application: Discriminants

T he concept of the discriminant also bumps up from 1DH-land to 2DH-
land. Again, the discriminant being zero tells us that there are places

where both the function and its derivatives are
zero. Geometrically, this means that there are
places on the curve (function = 0) where the tan-
gent is not defined (derivative vector= 0). This can
happen if the curve is factorable into lower-order
curves; the points in question are the points of
intersection of the lower-order curves. Or it can
mean that there are cusps or self-intersections in
the curve. We’ll see examples of all these below.

Quadratic
The discriminant of a quadratic curve is just the de-
terminant of the matrix Q. We saw this in Chapter
1. In diagram notation, this looks like

If this discriminant is zero, it means that the quadratic is
factorable into two linear terms. Geometrically, it means
that the curve is not a simple conic section, but a degenerate
one consisting of two intersecting straight lines. See Figure
20.2.
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Cubic
An equivalent expression for the cubic curve case is considerably more
complicated. Paluszny and Patterson describe the cubic discriminant as a
polynomial that is degree 12 in the coefficients A. . .F and that has over
10,000 terms.2 Manipulating this thing explicitly is . . . inconvenient.
Actually, it’s not that complicated. George Salmon showed that the dis-
criminant is a function of two simpler quantities:

where S is degree 4 in A. . .K and has 25 terms, and T is degree 6 in A. . .K
and has 103 terms.3 Salmon worked out all these terms by hand (it’s amaz-
ing what people had time to do before the invention of television). The
cubic discriminant relates to the geometry of the cubic curve as shown
in Figure 20.3. Notice the varieties of cusp, self-intersection, and lower-
order-curve intersection that can happen when ∆3 = 0.
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2 Paluszny, M., and Patterson, R. “A Family of Tangent Continuous Cubic Algebraic Splines,” ACM
Transactions on Graphics, Vol. 12, No. 3, July 1993, p. 212.

3 Salmon, G. A Treatise on the Higher Plane Curves, G. E. Stechert & Co., New York, 1934. A photographic
reprint of the third edition of 1879, pp. 191, 192, and 199.



How can we express this as a tensor diagram? Let’s work backwards
and see what sorts of simple diagrams we can make out of C nodes and
epsilons. After some fooling around, I came up with the following two:

Using the program described in the next chapter, I have been able to verify
that

Pastafazola! Salmon’s invariants correspond to the two simplest tensor dia-
grams we can make for cubic curves! Some more fiddling with constants
gives us

Relationships
Relationships

T here’s something even more interesting going on here. Notice the simi-
larity between the formula for the discriminants of a 1DH quartic poly-

nomial and a 2DH cubic curve:

This means that there is a relationship between the possible root struc-
tures of a fourth-order polynomial and the possible degeneracies of a
third-order curve. That’s one of the things I’m currently trying to
understand.
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Notation, Notation, Notation
Notation, Notation, Notation

A lot of the notational language of mathematics consists of the art of cre-
ative abbreviation. For example, a vector-matrix product pT is an ab-

breviation for a lot of similar-looking algebraic expressions. However,
clunky expressions like Table 20.3(b) showed that this notation is not pow-
erful enough to allow us to easily manipulate the sort of expressions that
we are encountering here. Einstein index notation has this power, but of-
ten gets buried under an avalanche of index letters. The tensor diagram
method of drawing EIN is a better way to handle the index bookkeeping.
What I’ve shown here is only the tip of the iceberg. There are a lot of
other things that diagram notation can do well that I will cover in future
columns.

Our languages help form how we think. I believe that this notation can
help us think about these and similar problems and allow us to come up
with solutions that we wouldn’t find any other way.
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Chapter Twenty-One: Tensor Contraction in C++

C H A P T E R T W E N T Y - O N E

Tensor Contraction
in C++

M A R C H – A P R I L 2 0 0 1

I n the previous chapter, I talked about a notational device for matrix alge-
bra called tensor diagrams. This time I’m going to get real and write some

C++ code to evaluate these quantities symbolically. This gives me a
chance to play with some as yet untried (by me) features in the C++ Stan-
dard Library, like strings and STL container classes. For more on STL,
check out my favorite book on the subject: The C++ Standard Library by
Nicolai M. Josuttis (Addison Wesley, 1999). I am trying to figure out if I
like these new-fangled programming tools by seeing how much code I can
get away with not writing these days. My initial impression is positive. So
this article is partially a demo/advertisement of the benefits of the STL. If
you spend some time learning these tools, you too can write less code that
does more.

The Basic Objects
The Basic Objects

S ince this chapter is mostly about C++, I will review just enough of the
algebra to motivate the code. We are interested in algebraic curves de-

fined by The simplest of these is a straight line, represented
by the equation

class Polynomial

{

TermList Terms;

public:

Polynomial& operator+=(const Term& T)

{

Terms[T.Monomial] += T.Coefficient;

return *this;

}

};

( ), , 0.F x y w =

0Ax By Cw+ + =



A quadratic curve is represented by the equation

A cubic curve is represented by the equation

We want to relate various geometric properties of these curves with al-
gebraic combinations of the coefficients A. . .K. The first step is to arrange
the coefficients in arrays that, in mathematical lingo, are called tensors. For
a line, we arrange the coefficients into a column vector:

For the quadratic, we define the symmetric matrix

For the cubic curve equation, we arrange the coefficients into a 3×3×3
tensor that we can write (clumsily) as a vector of matrices:

When we write an element of one of these tensors, the convention is to la-
bel its location in the array with indices written as subscripts. These are
called covariant indices and look like

A point, on the other hand, is written as a row vector:
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When we write an element of the point, we label it with an index written
as a superscript. (This does not mean exponentiation. It’s just a place to put
the index.) These indices are called contravariant and look like

Finally, we will have use for a constant 3×3×3 contravariant tensor
called epsilon whose elements are defined to be

The Basic Operation
T he basic quantity we want to calculate is a “contraction” of two or more

tensors. Vector dot products and vector/matrix products are special
cases of tensor contractions. More generally, we want to evaluate expres-
sions such as

(21.1)

And, being lazy, we will abbreviate expressions like Equation (21.1) by
leaving out the summation sign. Any index that appears exactly twice in an
expression, once as covariant and once as contravariant, will be assumed
summed over.

So, I want to come up with a simple symbolic algebra manipulation
program that is good at these sorts of expressions and doesn’t really need
to handle anything more general. We saw in Chapter 20 that Equation
(21.1) should evaluate to six times the determinant of Q. So if we translate
Equation (21.1) into C++ code, we want the program to print out some-
thing like this:

(21.2)

Incidentally, if this polynomial is zero, it tells us that the quadratic is really
the product of two linear factors—that is, the equation stands for two
straight lines.

The Epsilon Routine
The Epsilon Routine

T he most obvious first step is to define a routine to calculate epsilon as
follows:
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int epsilon(int i, int j, int k)

{

if(i==0 && j==1 && k==2) return  1;
if(i==1 && j==2 && k==0) return  1;
if(i==2 && j==0 && k==1) return  1;
if(i==2 && j==1 && k==0) return –1;
if(i==0 && j==2 && k==1) return –1;
if(i==1 && j==0 && k==2) return –1;
return 0;

}

We are ultimately going to define a class Polynomial to hold the
final answer and a subroutine Q(i,j) that returns the symbolic value in
element i,j. If we design these properly, we can write code to evaluate
Equation (21.1) that simply loops through all values of i, j, k, l, m, n and
adds up the terms, like so (note that I am using the STL-like convention
for loop bounds).

#define forIndex(I) for(int I=0;I!=3;++I)

Polynomial E;

forIndex(i)

forIndex(j)

forIndex(k)

forIndex(l)

forIndex(m)

forIndex(n)

E += epsilon(i,j,k)*epsilon(l,m,n)*

Q(i,l)*Q(j,m)*Q(k,n);

cout << E << endl;

This, however, gets out of hand pretty quickly. The epsilon tensor is
mostly zeros; in fact, only 6 out of the 27 entries are nonzero (or of
them). If you have two epsilons in your expression, then only 6*6 out of
the 27*27 possible combinations are nonzero (about 1 in 20). Some of
the diagrams we will be ultimately interested in can have eight or more
epsilons. This means that only 68 out of the 278 iterations (about 1 in
168,151) actually adds anything to E. And for each epsilon, you have three
nested loops. There must be a better way.

There is. We’ll turn the loops inside out. Instead of generating all
combinations of indices, we will have each loop go through the six non-
zero epsilon values and return to us their indices and signs. The new epsi-
lon function looks like
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int epsilon (int which, int* pI, int* pJ, int* pK)

{

static int Ix1[6]={0,1,2, 2, 0, 1};
static int Ix2[6]={1,2,0, 1, 2, 0};
static int Ix3[6]={2,0,1, 0, 1, 2};
static int Sgn[6]={1,1,1,-1,-1,-1};

*pI=Ix1[which];
*pJ=Ix2[which];
*pK=Ix3[which];
return Sgn[which];

}

And the loop to evaluate Equation (21.1) will look like

#define forEpsilon(e) for (int e=0; e!=6; ++e)

Polynomial P;

forEpsilon(e1)

forEpsilon(e2)

{

int i,j,k, l,m,n;

int sign=epsilon(e1,&i,&j,&k)
−*epsilon(e2,&l,&m,&n);

P +=sign*Q(i,l)*Q(j,m)*Q(k,n);
}

cout << P<<endl;

Note that I broke the summation statement into two. This is because the
calls to epsilon return the index values and must be executed before the
calls to Q. Putting these into the same statement might work, but it’s a bit
dicey. The above paranoia guarantees correct operation.

The Polynomial Object
The Polynomial Object

N ow let’s look at what we must do, in C++ terms, to make the following
statement make sense:

P += sign*Q(i,l)*Q(j,m)*Q(k,n);

The result we expect from this, Equation (21.2), is a sum of five terms,
each of which is some integer coefficient times a monomial consisting of
the product of three elements of the Q matrix. So, programwise, a Poly-
nomial is some sort of list of Terms. And each Term consists of an in-
teger, Coefficient, and some sort of list of variable names called
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Monomial. There are many ways to manage lists in C++, but to see
which one is best we must look at how the lists will be used.

What must happen when the above statement executes? The code for
the operator+= must search through the existing elements of P to see
if there is already one there that has the same Monomial as the Term be-
ing added. If there is, it adds sign to the Coefficient field of the
Term. If such a Term doesn’t exist, we must insert one and initialize the
Coefficient field to sign. So, what are the basic operations we will be
doing a lot of? We will be searching the Polynomial list for an entry
containing a desired Monomial, which implies doing a lot of compari-
sons between various Monomial lists. My first design decision, then, is to
only allow single characters for symbolic variables and to make the Mono-
mial list be a C++ standard string. A simple, built-in, string compar-
ison can then compare two Monomial lists.

Now, what kind of list should we use for the Polynomial object? My
first try (as all first tries should be) was to use an STL vector and use all
the standard vector operations for searching and inserting into it. Then,
after reading a bit further in the STL manual, I found another collection
object that is more ideally suited for the Polynomial class—-it’s called a
map. A map is a collection of key/value pairs that are kept sorted on the
key value for easy lookup. What we will do is make the key the Monomial
string and the value field the Coefficient integer. That is, instead of
making Polynomial be an explicit list of Term’s, we’ll make it a map
from Monomial values to Coefficient values. And what’s really nice
about the STL implementation of the map is that it can be accessed syn-
tactically as though it were an associative array; the subscription operator
is overloaded to do a lookup (and insertion if necessary) and return a refer-
ence to the appropriate value field. The whole Polynomial class be-
comes almost trivial.

class Term

{

int Coefficient;

string Monomial;

friend class Polynomial;

// definition shown below

};

typedef map<const string,int> TermList;

class Polynomial

{

TermList Terms;
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public:

Polynomial& operator+=(const Term& T)

{

Terms[T.Monomial] += T.Coefficient;

return *this;

}
};

That’s really all there is to it; anything else you need is provided by default
by the C++ compiler. For printing purposes, we need an insertion opera-
tor that uses the standard STL mechanism for iterating through the map.
To do this, just add the following to the definition of Polynomial:

friend ostream&

operator<< (ostream& out, const Polynomial& P)

{

TermList::const_iterator i;

for(i =P.Terms.begin();
i!=P.Terms.end();
++i)
out <<showpos<< i->second << i->first;

return out;

}

The Term Object
The Term Object

N ow we need to gen up some arithmetic operators that will allow the
C++ expression

sign*Q(i,l)*Q(j,m)*Q(k,n)

to construct the appropriate Term object to pass to Polynomial::op-
erator+=. Recall that the variable sign is the integer result of multi-
plying several calls to epsilon. Simply having Q return a single char
won’t work since C++ is perfectly happy to add ints and chars as nu-
meric quantities. No, we must have a user-defined class Symbol that
wraps the return from Q and allows us to define some multiplication oper-
ators within Term that accept ints and Symbols.

class Symbol

{

char c;
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public:

Symbol(const char ci):c(ci) {}

char asChar() const {return c;}

};

The conversion constructor from char to Symbol allows us to write the Q
routine simply:

Symbol Q(int i, int j)

{

static char V[]=“ABC”
−“BDE”
−“CEF”;

return V[i*3+j];
}

Next, we make a Term constructor that will convert the integer sign
into a Term with a null Monomial string. Then we make a multiplication
operator for Term*Symbol that simply takes the character from Symbol
and appends it to the Monomial string. Finally, to make these strings
mathematically comparable by doing a string comparison, we will keep
Monomial sorted. Fortunately, there is a handy algorithm in STL that
makes this easy. The final Term class looks like

class Term

{

int Coefficient;

string Monomial;

public:

Term(int s): Coefficient(s), Monomial() {;}

Term& operator*=(const Symbol& s)

{

Monomial += s.asChar();

sort(Monomial.begin(),Monomial.end());

return *this;

}

};

const Term

operator*(const Term& lhs, const Symbol& S)

{return Term(lhs) *= S;}
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It Works
T hat’s all there is to it. We just mash this together with the header files.

#include <string>
#include <iostream>
#include <algorithm>
#include <map>

using namespace std;

And the code prints out the desired result:

+6ADF-6AEE-6BBF+12BCE-6CCD

Examples
Examples

N ow let’s play with this. First, I want to define some more general tensor
objects. These should be callable in the same manner as Q above. Each

of them will, upon creation, store a single char for each element and will
provide a parenthesis operator to return an element of the tensor as a
Symbol. Keeping things as simple as possible, the definitions are

class Vector

{

char V[3];

public:

Vector(const char v[3])

{copy(&v[0],&v[3],V);} //STL copy algorithm

Symbol operator()(int i) const

{return V[i];}

};

class Matrix

{

char V[9];

public:

Matrix(const char v[9])

{copy(&v[0],&v[9],V);}

Symbol operator()(int i, int j) const

{return V[i*3+j];}
};
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class Tensor3

{

char V[27];

public:

Tensor3(const char v[27])

{copy(&v[0],&v[27],V);}

Symbol operator()(int i, int j, int k) const

{return V[(i*3+j)*3+k];}
};

Cross Product
The original motivation for defining epsilon was as an abbreviation for the
cross product. Here we verify that it works by evaluating

In the diagram notation of the previous chapter, this looks like

The cross product has one free index (k here), so it necessitates the use of
an array of Polynomial objects.

Vector L(“abc”);

Vector M(“def”);

Polynomial P[3];

forEpsilon(e)

{

int i,j,k;

int sign = epsilon(e,&i,&j,&k);

P[k] += sign*L(i)*M(j);

}

forIndex(k)

cout <<“P(“<<k<<“)=“<<C[k]<<endl;

This prints

P(+0)=+1bf-1ce
P(+1)=-1af+1cd
P(+2)=+1ae-1bd
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Line/Quadratic Tangency
The condition that a line L is tangent to a quadratic curve Q is

Or in diagram notation,

Evaluate this by the following code:

Matrix Q(“ABC”

“BDE”

“CEF”);

Vector L(“abc”);

Polynomial P;

forEpsilon(e1)

forEpsilon(e2)

{

int i,j,k, l,m,n;

int s = epsilon(e1,&i,&j,&k)

* epsilon(e2,&l,&m,&n);

P += s*Q(i,l)*Q(k,m)*L(j)*L(n);

}

cout << P << endl;

This prints

-2ADcc+4AEbc-2AFbb+2BBcc-4BCbc-4BEac
+4BFab+2CCbb+4CDac-4CEab-2DFaa+2EEaa

In particular, if Q is a unit circle at the origin, we would have

Manually plugging this into our printed expression, we get

-2cc+2bb+2aa

In other words, line L is tangent to the unit circle if its elements satisfy
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An Epsilon Identity
Here is a confirmation of an identity I showed in the previous chapter. We
apply three copies of a 3×3 transformation matrix to the three indices of
epsilon and get a bare epsilon times the scalar detT:

or in diagram notation

This expression has three free indices, l,m,n, but we can do this one with-
out an array of Polynomials.

Matrix T(“abc”

“def”

“ghj”);

forIndex(l)

forIndex(m)

forIndex(n)

{

Polynomial P;

forEpsilon(e1)

{

int i,j,k;

int s = epsilon(e1,&i,&j,&k);

P += s*T(i,l)*T(j,m)*T(k,n);

}

cout <<l<<m<<n<<“ “<<P<<endl;
}

This prints the following imposing stuff:

+0+0+0 +0adg
+0+0+1 +0adh+0aeg+0bdg
+0+0+2 +0adj+0afg+0cdg
+0+1+0 +0adh+0aeg+0bdg
+0+1+1 +0aeh+0bdh+0beg
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+0+1+2 +1aej-1afh-1bdj+1bfg+1cdh-1ceg
+0+2+0 +0adj+0afg+0cdg
+0+2+1 -1aej+1afh+1bdj-1bfg-1cdh+1ceg
+0+2+2 +0afj+0cdj+0cfg
+1+0+0 +0adh+0aeg+0bdg
+1+0+1 +0aeh+0bdh+0beg
+1+0+2 -1aej+1afh+1bdj-1bfg-1cdh+1ceg
+1+1+0 +0aeh+0bdh+0beg
+1+1+1 +0beh
+1+1+2 +0bej+0bfh+0ceh
+1+2+0 +1aej-1afh-1bdj+1bfg+1cdh-1ceg
+1+2+1 +0bej+0bfh+0ceh
+1+2+2 +0bfj+0cej+0cfh
+2+0+0 +0adj+0afg+0cdg
+2+0+1 +1aej-1afh-1bdj+1bfg+1cdh-1ceg
+2+0+2 +0afj+0cdj+0cfg
+2+1+0 -1aej+1afh+1bdj-1bfg-1cdh+1ceg
+2+1+1 +0bej+0bfh+0ceh
+2+1+2 +0bfj+0cej+0cfh
+2+2+0 +0afj+0cdj+0cfg
+2+2+1 +0bfj+0cej+0cfh
+2+2+2 +0cfj

You can, if you like, make this neater by jiggering the operator<< rou-
tine to avoid printing monomials with a coefficient of zero. It’s sometimes
interesting, though, to see what monomials were added and subtracted
(with net coefficient of zero) to an expression.

Some Cubic Identities
The following quantity is identically zero for all values of C:

In diagram notation,
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We verify this by

Tensor3 C(“ABE” “BCF” “EFH”

“BCF” “CDG” “FGJ”

“EFH” “FGJ” “HJK”);

forIndex(l)

{

Polynomial Zl[3];

forEpsilon(e1)

{

int i,j,k;

int s = epsilon(e1,&i,&j,&k);

Zl[k] += s * C(i,j,l);

}

forIndex(k)

cout <<“Z(“<<l<<k<<“)=“<<Zl[k]<<endl;
}

The printout is

Z(+0+0)=+0F
Z(+0+1)=+0E
Z(+0+2)=+0B
Z(+1+0)=+0G
Z(+1+1)=+0F
Z(+1+2)=+0C
Z(+2+0)=+0J
Z(+2+1)=+0H
Z(+2+2)=+0F

This means that if we see such a diagram fragment embedded in a larger
diagram, we can immediately say that the whole thing is zero.

Likewise, the following expression containing a cubic is also identi-
cally zero for any tensor C:

In diagram form,
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As code,

Polynomial P;

forEpsilon(e1)

forEpsilon(e2)

forEpsilon(e3)

{

int i,j,k, l,m,n, p,q,r;

int s = epsilon(e1,&i,&j,&k)

* epsilon(e2,&l,&m,&n)

* epsilon(e3,&p,&q,&r);

P +=s*C(i,l,p)*C(j,m,q)*C(k,n,r);
}

cout <<P<<endl;

This prints out

+0ADK+0AGJ+0BCK+0BFJ+0BGH
+0CEJ+0CFH+0DEH+0EFG+0FFF

The final example is a bit more complex. We will evaluate the C4 in-
variant of a 2DH cubic curve as described in Chapter 20.

For fairly obvious reasons, I call it the “cube invariant” because of the
diagram

I’m going to do something slightly different this time for the C++ code.
All our examples so far have made the code mimic the algebraic expres-
sion. This is easy to use, but can be a bit slow. That’s because there is a lot
of creation, sorting, and destruction of temporary Term variables during
execution of the binary multiply operator. I’ll write the code for the fol-
lowing example to show an alternative way to generate the Term that uses
our existing machinery, but avoids unnecessary creation and deletion.

Polynomial P;

forEpsilon(e1)

forEpsilon(e2)

Examples 307

ijk pqrlmn tuv
nqv jru kmt ilpC C C Cε ε ε ε

C

C

C

C



forEpsilon(e3)

forEpsilon(e4)

{

int i,j,k, l,m,n, p,q,r, t,u,v;

Term T(epsilon(e1,&i,&j,&k)

* epsilon(e2,&l,&m,&n)

* epsilon(e3,&p,&q,&r)

* epsilon(e4,&t,&u,&v)); // create once

T *= C( n,q,v); // modify existing one

T *= C(j ,r,u);

T *= C(k,m, t);

T *= C(i,l,p );

P += T;

}

cout << P << endl;

This generates the following:

+24ACGK-24ACJJ-24ADFK+24ADHJ+24AFGJ
-24AGGH-24BBGK+24BBJJ+24BCFK-24BCHJ
+24BDEK-24BDHH-24BEGJ-48BFFJ+72BFGH
-24CCEK+24CCHH+72CEFJ-24CEGH-48CFFH
-24DEEJ+24DEFH+24EEGG-48EFFG+24FFFF

How Do I Like This?
How Do I Like This?

C++ giveth and C++ taketh away. The internal machinery of the map
object keeps its key/value pairs stored in some sort of binary tree thingy

so that searching is very fast. This is something I would not have felt like
getting into myself. That’s good. But the simple mimicking of an algebraic
expression by a C++ expression implies a lot of strange jiggery-pokery
going on during the creation of a Term. That’s not so good. But who
cares really. The execution time of the examples shown here is negligible.
It’s only when you get upwards of eight epsilons that the program takes a
noticeable amount of time. Rewriting the expressions as in the final exam-
ple helps here. For even more complex situations, it would be easy to add
an explicit Term constructor that is passed a sign and some fixed number
of Symbols. This constructor could resize Monomial once, assign the
Symbols to it explicitly, and only need to sort it once. I’ll leave that as an
exercise for you to do yourselves.
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WhatÕs Next
WhatÕs Next

O ne can imagine any number of extensions to this code to handle more
general expressions. But what we have here is good enough to serve as

a check on our theoretical investigations to make sure we don’t miss
any constant factors or stray minus signs. Now that we can verify some
of our computations, we can look for the geometric meaning of trans-
formationally invariant algebraic quantities (invariant because they can be
written as tensor diagrams). That will be the topic of future columns.
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Appendix

This appendix contains definitions for the vector and matrix classes neces-
sary to compile the code fragments in Chapters 1 and 2. I have included
only those functions actually used in the examples. A complete implemen-
tation would require quite a few more operations.

Vector3
Vector3

class Vector3

{

float v[3];

public:

//Constructor

Vector3();

//Element access

float& operator[](int i);

float operator[](int i) const;

//Assignment operators

Vector3& operator+=(const Vector3&);
Vector3& operator*=(const float&);

};

//Vector sum and scalar product

const Vector3 operator+(const Vector3&, const Vector3&);
const Vector3 operator*(const float& , const Vector3&);

Matrix33
Matrix33

class Matrix33

{

Vector3 rows[3]; // vector of rows

public:

//Constructor



Matrix33();

Matrix33(float m00, float m01, float m02,

float m10, float m11, float m12,

float m20, float m21, float m22);

//Element Access

float& operator() (int iRow, int jCol);

float operator() (int iRow, int jCol) const;

//Standard matrix functions

const Matrix33 Adjoint() const;

};

Vector4
Vector4

class Vector4

{

float v[4];

public:

//Constructor

Vector4();

Vector4(float v0, float v1, float v2, float v3);

//Element access

float& operator[](int i);

float operator[](int i) const;

//Assignment and unary operators

Vector4& operator/=(const float&);
Vector4 operator-() const;

};

//Vector sum and scalar product

const Vector4 operator+(const Vector4&, const Vector4&);
const Vector4 operator*(const float& , const Vector4&);

const Vector4 operator/(const Vector4&, const float& );

//4D cross product

const Vector4 Cross(const Vector4&,const Vector4&,const

Vector4&);

Matrix44
Matrix44

class Matrix44

{
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Vector4 rows[4];

public:

//Identity matrix

static Matrix44 Identity;

//Constructor

Matrix44();

//Element Access

float& operator() (int iRow, int jCol);

float operator() (int iRow, int jCol) const;

//Column Access

void setCol(int iCol,const Vector4&);

Vector4 Col(int iCol) const;

//Matrix * Matrix^t (fast if matrix is stored as rows)

Matrix44 TimesTranspose(const Matrix44&) const;

//Standard matrix functions

const Matrix44 Adjoint() const;

const Matrix44 Inverse() const;

};

// scalar and matrix products

const Matrix44 operator*(const float&   , const

Matrix44&);

const Vector4 operator*(const Matrix44&, const Vector4&

);

const Matrix44 operator*(const Matrix44&, const

Matrix44&);
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coefficient matrix of cubic curves constant under,

209
eye space to pixel space, 42
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values
planes

intersection, 20
naming conventions for coordinate systems, 25
polar, 21
silhouette, 21
tangency, 20
See also clipping planes

points
on a cubic curve, 270, 271
degenerate quadratic matrix for, 40
determining if inside or outside second-order curves,

13–14, 40
dot products of homogenous points on a line, 270
duality principle, 14
homogenous coordinates, 8
naming conventions for coordinate systems, 24
polar line of a point, 17
polar point of a line, 17
on a quadratic curve, 270
tensor for, 294

polar line of a point, 17
polar planes, 21
polar point of a line, 17
polynomial coefficients, base symbols for, 2
polynomial discriminants, 255–291

1DH application: discriminants, 278–282
2D homogenous geometry, 269–270
2DH application: discriminants, 288–290
2DH application: tangency, 284–288
2DH tensor diagrams, 271–276
in cubic equations, 256–257, 260–264
homogenous matrix formulation, 258–260, 264
homogenous polynomials, 276–277
invariance, 282–284
notation, 291
parameter value where function and derivative are

zero, 260
problem statement, 270–271
in quadratic equation, 255–256, 259, 263–264
in quartic equations, 257–258, 264–267
relationships, 290

Polynomial tensor object, 297–299
Porter-Duff over operator. See MMX compositing rou-

tine; over operation
positive definite 2×2 matrix, 79–80, 84–85
positive range for sphere, 53–54

power function approximations using floating-point
exponentiation, 128, 129
inverse, 130
inverse square root, 130
iterative refinement techniques for, 130–132
relative errors for, 130, 131, 132

predictions. See future (2020)
premultiplication by alpha channel, as unsolved prob-

lem, 163
Prod class

Vector class with expression template and copying
for, 250–251

Vector class with expression template for, 248–251
Vector class with expression template with only

vector references for, 251–253
Vector class with virtual function for, 246

Q
quadratic curve

algebraic equation for, 294
discriminant, 288–289
points on, 270
tangency with line, 285–287, 303
tensor contraction example for line/quadratic tan-

gency, 303
tensor for, 294

quadratic equation
discriminants, 255–256, 259, 263–264, 283
homogenous, 258–259, 276, 277
homogenous matrix formulation, 259
invariance of sign of discriminant, 283–284

quadratic polynomial discriminant, 278
quadrics

naming conventions for coordinate systems, 25
tangent, 18–19

quartic equations
discriminants, 257–258, 264–267
homogenous matrix formulation, 264

quartic polynomial, discriminant, 281–282, 290

R
RAM. See memory
range calculations for sphere, 48–50, 52–55

eliminating wrapped-around branch, 54–55
integer subrange, 49–50
positive range, 53–54
x range, 49, 55
y range, 48, 55

rational parametric cubic curves
4D versions, 200–201
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rational parametric cubic curves (continued)
catalog of canonical cubic curves, 224–229
coefficient matrix, 209–213, 214–217, 220
collinear inflection points, 202–203
constancy under perspective transformation, 209
constancy under reparameterization, 209–211, 217,

220–221
defined, 196, 208, 220
determinant of third-order curves, 199–200
epsilon-delta rule, 200
false cubics, 225, 227
formula using homogenous coordinates, 220
geometric transformation and, 216–217, 222
goal, 196
homogenous cubic polynomials, types of, 203,

223–224, 225
inferring transforms, 223
inflection points, 196–199, 202–206, 213–214,

216–217, 221–222
missing third inflection point, avoiding, 204–206
root structures of cubic equations and, 202, 203,

224, 225
second-order curves without inflection points,

198–199
vector algebraic identity, 200
See also coefficient matrix of parametric cubic curves;

inflection points of cubic curves
real-time 3D uses, as unsolved problem, 166–167
rendering a sphere. See drawing a sphere
reparameterization

coefficient matrix of cubic curves constant under,
209–211, 217, 220–221

inflection points of cubic curves and, 217
resolution issues

for eye space and depth comparisons, 151–152
for pixel space and clipping, 28, 29
$w buffering and, 155–156

root structures of cubic equations, 203, 224, 225
rotational invariance of 2×2 matrix, 83–84, 86–87, 89,

90
row-ordered layout for texture map storage, 60–63

S
Salmon, G., 289, 290
scaled integers, floating-point numbers vs., 123
schematic diagrams

for row-ordered map, 61, 62, 63
sketchy drawings for, 61–62

scientific notation
conventional, 124

IEEE floating-point version, 124, 125
screen coverage calculation, 97–106

algorithm, 102–104
clip culling, 97–99
overconservativeness of algorithm, 104–106
screen extent of hull points, 99–101

screen space
defined, 148
texture mapping and, 153–155
transformation from eye space, 149–150
transformation from perspective space, 149

Seattle world’s fair (1962), 235
second-order curves, 10–19

degenerate, 10–12, 13
determining if point is inside or outside, 13–14, 40
eigenvalue categorization of, 12–13
general equation, 10
matrices for, 10, 11
nondegenerate, 11, 13
normal vectors, 16
testing line tangency, 14–16
transformation, 12

second-order surfaces, 19–21
eigenvalue categorization of, 20
normal vectors, 16, 20–21
polar planes, 21
silhouette planes, 21
transformations, 20

sheared space, 33–36
shearing

algorithm, 35–36
for clipping behind silhouette plane, 36–39
silhouette planes, 33–36

SIGGRAPH (1998), 159
SIGGRAPH panel (1991), 161
sign bit of floating-point numbers, shifting for bit

masks, 124–125
signed multiply in MMX, 112
silhouette planes

clipping behind, 36–39
hyperbolic silhouette, 52–55, 56
overview, 21
parabolic silhouette, 56–58
shearing, 33–36

simplicity, as unsolved problem, 163
singular value decomposition of 2×2 matrix, 87–89
sketchy drawings for diagrams, 61–62
sLR

in clip culling, 98–99
defined, 98–99
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in screen coverage calculation, 102–103
in screen extent calculation, 99–101

spaghetti, as unsolved problem, 166
special cases

for eigenvector calculation, 76
MMX and testing for, 120–121

sphere, drawing. See drawing a sphere
square root

of 2×2 matrix, 92–95
floating-point trick for approximating, 129
inverse, floating-point trick for approximating, 130,

131
sRGB standard

algorithm, 135
digital video conversion vs., 134–135

subscripts
alphabetic position of letters for, 2
mathematical vs. computer language notation, 4
overview, 2–3

Sum class
Vector class returning Sum object, 242–244
Vector class using expression base class with, 245
Vector class with expression template and copying

for, 250–251
Vector class with expression template for,

248–251
Vector class with expression template with only

vector references for, 251–253
Vector class with virtual function for, 245

superscripts, 3
Sutherland, Ivan, 160, 232
symmetric 2×2 matrix

eigenvalues and, 91, 93
positive (negative) definite, 79–80, 84–85
rotational invariance, 83–84, 86–87, 89, 90
with two different eigenvalues, 77, 78
with uniformly scaled identity, 77
with uniformly scaled rotation, 77, 78

systems integration, as unsolved problem, 162

T
table lookup for address calculation in virtual memory,

65–66
tangency

2DH application, 284–288
of cubic curve with line, 287–288
plane tangency, 20
polar lines and points, 17
of quadratic curve with line, 285–287, 303
tangent quadric, 18–19

tensor contraction example for line/quadratic tan-
gency, 303

testing for lines, 14–16
teaching, as unsolved problem, 162
telescopic views of spheres, 29
templates. See C++ expression templates
tensor contraction in C++, 293–309

basic objects, 293–295
basic operation, 295
cross product example, 302
cubic identity examples, 305–308
epsilon identity example, 304–305
epsilon routine, 295–297
evaluation, 308
header files, 301
line/quadratic tangency example, 303
Matrix tensor object, 301
Polynomial tensor object, 297–299
result, 301
Tensor3 tensor object, 302
Term tensor object, 299–300
Vector tensor object, 301

Tensor3 tensor object, 302
tensors

2DH tensor diagrams, 271–276
covariant, 47
for cubic curve, 294
defined, 12, 294
epsilon, 295
for line, 294
for point, 294
for quadratic curve, 294
See also 2DH tensor diagrams

Term tensor object, 299–300
texture coordinates for unit sphere, 46
texture filtering, bad interpolation for, 165
texture mapping, 59–67

2D-to-2D, 179–194
color calculation, 59–60
eye space vs. screen space and, 153–155
page faults and, 60–61, 62, 63, 64–65
for polar view of sphere, 63
for rotated “grain” of texture, 63
row-ordered layout, 60–63
for side view of sphere, 62
size of maps, 60
table lookup for address generation, 65–66
tile-ordered layout, 64–67
virtual memory storage of texture maps, 60–62
See also 2D-to-2D texture mapping
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tile-ordered layout for texture map storage
analysis of effectiveness, 66
page faults and, 64–65
table lookup for address calculation, 65–66
tile-within-tiles scheme, 66–67

trace of 2×2 matrix
defined, 70
invariance under transformation, 82, 85–86, 89

transformations
2D homogenous geometry, 270, 272
2DH tensor diagrams, 273–274
canonical geometric transform for coefficient matrix

of cubic curves, 212–213, 214–216
coefficient matrix of cubic curves constant under,

209–211, 217
cross ratio constancy and, 174–175
from definition space to eye space, 27, 42
from definition space to pixel space, 28, 30–32, 42
eigenvalues and, 13
from eye space to perspective space, 27–28, 149
from eye space to pixel space, 42
from eye space to screen space, 149–150
geometric transformation of cubic curves, 216–217
naming conventions for coordinate systems, 25
from perspective space to screen space, 149
perspective transform, 42
second-order curves, 12
second-order surfaces, 20
shearing, 33–39
tensors, 12
trace invariance under, 82, 85–86, 89
of unit circle, 70
of unit square, 70, 71
vector transformation within coordinate system,

80–81
viewing transform, 27, 42
See also 2D-to-2D texture mapping

TV pixels vs. computer pixels, 164–165
typographic conventions, 2, 8

U
underfoot adornments, 3
unit circle

matrix for, 11
testing line tangency, 14–16
transformation of, 70

unit square, transformation of, 70, 71
unpacking/packing operations

as MMX bottleneck, 121
in MMX compositing routine, 112–113

unsigned multiply, MMX and, 112
unsolved problems in computer graphics, 159–167

antialiasing, 166
arithmetic sloppiness, 165–166
education, 162
historical problems, 159–161
legacy compatibility, 164–165
novelty, 162
pixel arithmetic theory, 163–164
real-time 3D uses, 166–167
simplicity, 163
solution defined, 161
spaghetti modeling, rendering, and animation, 166
systems integration, 162

V
Van Hook, Tim, 126
variable names, mathematical vs. computer language

notation, 4
Vector class, 237–253

basic version, 238
data layouts, 251
Evaluate routine, 242–243, 247–248
expression base class, 245
goal, 237–238
need for, 237
“sideways” expression evaluation in, 240
simplifications for this exposition, 238
timing comparisons for versions, 240–241
usefulness of, 253
version 1a (recommended arithmetic operators),

239–240
version 1b (explicit binary operators), 241–242
version 2 (returning a Sum object), 242–244
version 3 (virtual functions), 244–247
version 4a (expression templates), 248–250
version 4b (expression templates with copying),

250–251
version 4c (expression templates with only vector

references), 251–253
virtual functions compared to templates, 247–248

Vector tensor object, 301
Vector3 class, 311
Vector4 class, 312
vectors

algebraic identity for rational parametric cubic
curves, 200

mathematical vs. computer language notation, 5, 26
normal, 16
notation in this book, 4, 8
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optimizing C++ vector expressions, 237–253
transformation within coordinate system, 80–81
Vector class, 237–253
See also eigenvectors; Vector class

Veldhuizen, Todd, 238
viewing transform (definition space to eye space), 27, 42
virtual functions

C++ templates compared to, 247–248
Vector class with, 244–247

virtual memory
hardware assisted vs. software simulated, 61, 66–67
page faults, 60–61, 62, 63, 64–65
pages, 60
row-ordered layout, 60–61, 62, 63
table lookup for address generation, 65–66
texture map storage in, 60–63
tile-ordered layout, 64–67

voltage, light intensity and, 134

W
$w buffering, 155
Web predictions for 2020, 233
Web sites for world’s fairs, 235
“Wheel of Reincarnation,” 232
world’s fairs, 235

X
x range of sphere, 49, 55
Xmin, Xmax

initialization, 103–104
in screen coverage algorithm, 102–106
in screen extent calculation, 100–101

Y, Z
y range of sphere, 48, 55
Yuval, Gideon, 125
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